Принцип работы двигателя внутреннего сгорания

1 ≫

Современный автомобиль, чаще всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части . Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ) .

Первый такт - такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь . Работа этого такта происходит при открытом клапане впуска . Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт - такт сжатия

Следующий такт работы двигателя – такт сжатия . После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт - рабочий ход

Третий такт – рабочий , начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз . Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт - такт выпуска

Четвертый такт работы двигателя, последний – выпускной . Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан . Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически . А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

Материалы: http://autoustroistvo.ru/dvigatel-dvs/rabota-dvigatelya-vnutrennego-sgoraniya-takti-dvigatelya/

2 ≫

Двигатель внутреннего сгорания на жидком топливе, разработанный и впервые применённый на практике во второй половине 19-го века, являлся вторым в истории, после парового двигателя, примером создания агрегата, преобразующего энергию в полезную работу. Без этого изобретения невозможно себе представить современную цивилизацию, ведь транспортные средства с ДВС различного типа широко задействованы в любой отрасли, обеспечивающей существование человека.

Транспорт, приводимый в действие двигателем внутреннего сгорания, играет решающую роль в приобретающей все большее и большее значение на фоне глобализационных процессов всемирной логистической системе.

Все современные транспортные средства можно разделить на три больших группы, в зависимости от типа используемого двигателя. Первая группа ТС использует электродвигатели. Сюда входят и привычный городской общественный транспорт – троллейбусы и трамваи, и электропоезда с электромобилями, и огромные суда и корабли, использующие атомную энергию – ведь и современные ледоколы, и атомные субмарины, и авианосцы стран НАТО используют электродвигатели. Вторая группа – это техника, оснащенная реактивными двигателями.

Разумеется, такой тип двигателей используется преимущественно в авиации. Наиболее многочисленной, привычной и значимой является третья группа транспортных средств, которая использует двигатели внутреннего сгорания. Это – наибольшая и по количеству, и по разнообразию, и по влиянию на хозяйственную жизнь человека группа. Принцип работы ДВС одинаков для любых транспортных средств, оснащённых таким двигателем. В чем он заключается?

Как известно, энергия не берется ниоткуда и не уходит в никуда. Принцип работы двигателя автомобиля в полной мере основывается на этом постулате закона сохранения энергии.

Максимально обобщенно можно сказать, что для выполнения полезной работы используется энергия молекулярных связей жидкого топлива, сжигаемого в процессе работы двигателя.

Распространению ДВС на жидком топливе способствовали несколько уникальных свойств самого топлива. Это:

  • высокая потенциальная энергия молекулярных связей используемых в качестве топлива смеси легких углеводородов «например, бензина»
  • достаточно простой и безопасный, в сравнении, например, с атомной энергией, способ ее высвобождения
  • относительная распространенность легких углеводородов на нашей планете
  • природное агрегатное состояние такого топлива, позволяющее удобно хранить и транспортировать его.

Еще одним важнейшим фактором является то, что в качестве окислителя, необходимого для процесса высвобождения энергии, выступает кислород, их которого более чем на 20 процентов состоит атмосфера. Это избавляет от необходимости возить не только запас топлива, но и запас катализатора.

В идеальном случае вступить в реакцию должны все молекулы определённого объёма топлива и все молекулы определённого объёма кислорода. Для бензина эти показатели соотносятся как 1 к 14,7, т.е., для сгорания килограмма топлива необходимо почти 15 кг кислорода. Однако такой процесс, называемый стехиометрическим, на практике нереализуем. В действительности всегда остаётся какая-то часть топлива, не соединившаяся с кислородом во время протекания реакции.

Более того, для определённых режимов работы ДВС стехиометрия даже вредна.

Теперь, когда химические процесс в общих чертах понятны, стоит рассмотреть механику процесса превращения энергии топлива в полезную работу, на примере четырёхтактного ДВС, работающего по так называемому циклу Отто.

Наиболее известным и, что называется, классическим циклом работу является запатентованный еще в 1876 году Николаусом Отто процесс работы двигателя, состоящий из четырех частей. «тактов, отсюда и четрыехтактные ДВС». Первый такт – создание поршнем разрежения в цилиндре собственным перемещением под воздействием веса. В результате цилиндр заполняется смесью кислорода и паров бензина «природа не терпит пустоты». Продолжающий движение поршень сдавливает смесь – получаем второй такт. На третьем такте смесь воспламеняется «Отто применял обычную горелку, сейчас за это ответственна свеча зажигания».

Воспламенение смеси создаёт выделение большого количества газа, который давит на поршень и заставляет его подниматься – выполнять полезную работу. Четвёртый такт – открытие выпускного клапана и вытеснение продуктов сгорания возвращающимся поршнем.

Таким образом, только запуск двигателя требует воздействия извне – прокручивания коленвала, соединённого с поршнем. Сейчас это делается с помощью силы электричества, а на первых автомобилях коленвал приходилось проворачивать вручную «этот же принцип используется и в автомобилях, в которых предусмотрен принудительный ручной пуск двигателя».

Со времени выпуска первых автомобилей немало инженеров пытались изобрести новый цикл работы ДВС. Вначале это было связано с действием патента, которое многим хотелось обойти.

В результате уже в начале прошлого века был создан цикл Аткинсона, который изменил конструкцию двигателя таким образом, чтобы все движения поршня совершались за один оборот коленвала. Это позволило повысить КПД двигателя, но уменьшило его мощность. Кроме того, двигатель, работающий по такому циклу, не нуждается в отдельном распределительном вале и редукторе. Однако этот двигатель не получил распространения из-за снижения мощности агрегата и достаточно сложной конструкции.

Вместо него на современных атвомобилях зачастую используется цикл Миллера.

Если Аткинсон уменьшил такт сжатия, увеличив КПД, но изрядно усложнив работу двигателя, то Миллер предложил уменьшить такт впуска. Это позволило снизить фактическое время сжатия смеси без уменьшения ее геометрического сжатия. Таким образом, КПД каждого цикла работы ДВС увеличивается, за счет чего снижается расход топлива, сжигаемого «впустую».

Однако большинство двигателей работают по циклу Отто, так что более подробно необходимо рассмотреть именно его.

Даже наиболее простой вариант ДВС включает четырнадцать важнейших элементов, необходимых для его работы. Каждый элемент имеет определённые функции.

Так, цилиндр выполняет двоякую роль — в нем происходит активация воздушной смеси и двигается поршень. В части, называемой камерой сгорания, установлена свеча, и два клапана, один из которых перекрывает поступление топлива, другой – выпуск отработанных газов.

Свеча – устройство, обеспечивающее поджиг смеси с необходимой цикличностью. По сути, представляет собой устройство для получения достаточно мощной электрической дуги на короткий промежуток времени.

Поршень перемещается в цилиндре под действием расширяющихся газов или от воздействия коленвала, переданного через кривошипно-шатунный механизм. В первом случае поршень превращает энергию сгорания топлива в механическую работу, во втором – сжимает смесь для лучшего возгорания либо создает давление для удаления отработанных остатков смеси из цилиндра.

Кривошипно-шатунный механизм передаёт момент от поршня к валу и наоборот. Коленчатый вал благодаря своей конструкции преображает поступательное «вверх-вниз» движение поршня во вращательное.

Впускной канал, в котором располагается впускной клапан, обеспечивает попадание смеси в цилиндр. Клапан обеспечивает цикличность поступления смеси.

Выпускной клапан, соответственно, удаляет накопившиеся продукты сгорания смеси. Для обеспечения нормальной работы двигателя в момент нагнетания давления и поджога смеси он закрыт.

Работа бензинового ДВС. Подробный разбор

При такте всасывания поршень опускается вниз. Одновременно открывается впускной клапан, и в цилиндр подаётся топливо. Таким образом, в цилиндре оказывается топливовоздушная смесь. В определённых типах бензиновых двигателей эта смесь приготавливается в специальном устройстве – карбюраторе, в других смешение происходит непосредственно в цилиндре.

Далее поршень начинает подниматься. Одновременно впускной клапан закрывается, что обеспечивает создание достаточно большого давления внутри цилиндра. При достижении поршнем крайней верхней точки вся топливно-воздушная смесь оказывается сжатой в части цилиндра, называемой камерой сгорания. В этот момент свеча дает электрическую искру, и смесь воспламеняется.

В результате сгорания смеси выделяется большое количество газов, которые, стремясь заполнить собой весь предоставленный объем, давят на поршень, заставляя его опускаться. Эта работа поршня передается посредством кривошипно-шатунного механизма на вал, который начинает вращаться и вращать привод колес автомобиля.

Как только поршень завершает свое движение вниз, открывается клапан выпускного коллектора.

Оставшиеся газы устремляются туда, так как на них давит поршень, идущий вверх под воздействием вала. Цикл закончен, далее поршень снова опускается вниз, начиная новый цикл.

Как видно, полезную работу выполняет лишь одна фаза цикла. Остальные фазы — это работа двигателя «на самого себя». Даже такой положение вещей делает двигатель внутреннего сгорания одной из наиболее удачных по КПД систем, внедренных в производство. В то же время, возможность уменьшения «холостых» в смысле КПД циклов приводит к появлению новых, более экономичных систем. Кроме того, разрабатываются и ограниченно внедряются двигатели, которые вообще лишены поршневой системы. Например, некоторые японские автомобили оснащены роторными двигателями, имеющими более высокий коэффициент полезного действия.

В то же время, такие двигатели имеют ряд недостатков, связанных, в основном, с дороговизной производства и сложностью обслуживания таких моторов.

Система питания

Для того чтобы поступающая в камеру сгорания горючая смесь правильно сжигалась и обеспечивала бесперебойную работу двигателя, она должна вводится четко отмеренными порциями и быть соответствующим образом подготовлена. Для этой цели служит топливная система, важнейшими частями которой являются бензобак, топливопровод, топливные насосы, устройство для смешивания топлива и воздуха, коллектор, различные фильтры и датчики.

Понятно, что назначение бензобака – хранить необходимое количество топлива. Топливо воды используются в качестве магистралей для перекачки с помощью бензинового насоса, фильтры бензина и воздуха нужны, чтобы не допустить засорения тонких коллекторов, клапанов и топливоводов.

Подробнее стоит остановиться на работе карбюратора. Несмотря на то, что автомобили с такими устройствами больше не выпускаются, немало машин с карбюраторным типом двигателя до сих пор эксплуатируется во многих странах мира. Карбюратор смешивает топливо с воздухом следующим образом.

В поплавковой камере поддерживается постоянный уровень топлива и давления благодаря балансировочному отверстию, стравливающему лишний воздух,и поплавку, открывающему клапан топливовода, как только уровень топлива в камере карбюратора снижается. Карбюратор через жиклер и диффузор связан с цилиндром. Когда давление в цилиндре снижается, точно отмеренное благодаря жиклеру количество топлива устремляется в диффузор воздушной камеры.

Тут, за счет очень маленького диаметра отверстия, оно под большим давлением проходит в цилиндр, бензин смешивается с атмосферным воздухом, прошедшим через фильтр, и образованная смесь попадает в камеру сгорания.

Проблема карбюраторных систем – в невозможности максимально точно отмерить количество топлива и количество воздуха, попадающие в цилиндр. Поэтому все современные автомобили оснащены системой впрыска, называемой также инжекторной.

В инжекторном двигателе вместо карбюратора впрыск осуществляется форсункой или форсунками – специальным механическим распылителем, важнейшей частью которого является электромагнитный клапан. Эти устройства, особенно работая в паре со специальными вычислительными микрочипами, позволяют впрыскивать точно отмеренное количество топлива в необходимый момент. В результате двигатель работает ровнее, запускается легче, потребляет меньше топлива.

Механизм газораспределения

Понятно, каким образом карбюратор подготавливает горючую смесь из бензина и воздуха. Но как работают клапаны, обеспечивающие своевременную подачу этой смеси в цилиндр? За это ответственен механизм газораспределения. Именно он выполняет своевременное открытие и закрытие клапанов, а также обеспечивает необходимую длительность и высоту их подъема.

Именно эти три параметра и являются в совокупности фазами газораспределения.

Современные двигатели имеют специальное устройство для изменения этих фаз, называемое фазовращатель двс принцип работы которого основан на повороте в случае необходимости распредвала. Эта муфта при увеличении количества впрыскиваемого топлива поворачивает распределительный вал на определённый угол по ходу вращения. Такой изменение его положения приводит к тому, что впускные клапаны открываются раньше, и камеры сгорания наполняются смесью лучше, компенсируя постоянно возрастающую потребность в мощности. На наиболее технически передовых моделях стоит несколько таких муфт, они управляются достаточно сложной электроникой и могут регулировать не только частоту открытия клапана, но и его ход, что отлично сказывается на работе двигателя при максимальных оборотах.

Принцип работы системы охлаждения двигателя

Разумеется, далеко не вся выделяемая энергия связей молекул топлива превращается в полезную работу. Основная ее часть теряется, превращаясь в тепло, да и трение деталей ДВС также создает тепловую энергию. Лишнее тепло необходимо отводить. Именно этой цели служит система охлаждения.

Разделяют воздушную систему, жидкостную и комбинированную. Наиболее распространена жидкостная система охлаждения, хотя встречаются автомобили и с воздушной – ее использовали для упрощения конструкции и удешевления бюджетных машин, либо для уменьшения веса, если речь шла о спорткарах.

Основные элементы системы представлены теплообменником, радиатором, центробежным насосом, расширительным бачком и термостатом. Кроме того, в систему охлаждения входят масляный радиатор, вентилятор радиатора, датчик температуры охлаждающей жидкости.

Жидкость циркулирует через теплообменник под воздействием насоса, снимая температуру с двигателя. Пока двигатель не нагреется, специальный клапан закрывает радиатор – это называется «малый круг» движения. Такая работа системы позволяет быстро прогреть двигатель.

Как только температура поднимается до рабочей, термодатчик дает команду на открытие клапана, и охлаждающая жидкость начинает двигаться через радиатор. Тонки трубки этого агрегата обдуваются стильным потоком встречного ветра, охлаждая таким образом жидкость, которая опять поступает в коллектор, начиная круг охлаждения заново.

Если воздействия набегающего воздуха недостаточно для нормального охлаждения – автомобиль работает со значительной нагрузкой, движется с малой скоростью или стоит очень жаркая погода, включается вентилятор охлаждения. Он обдувает радиатор, принудительно охлаждая рабочую жидкость.

Машины, оборудованные турбонаддувом, имеют два контура охлаждения. Один – для охлаждения непосредственно ДВС, второй – для снятия лишнего тепла с турбины.

Электрика

Первые автомобили обходились минимумом электрики. В современных машинах появляется все больше и больше электрических цепей. Электроэнергию потребляют система подачи топлива, зажигание, система охлаждения и отопления, освещение. При наличии немало энергии потребляет система кондиционирования, управления двигателем, электронные системы обеспечения безопасности. Такие агрегаты, как система запуска и свечи накаливания потребляют энергию кратковременно, но в больших количествах.

Для обеспечения всех этих элементов необходимой электроэнергией используются источники тока, электрическая проводка, элементы управления и блоки предохранителей.

Источники тока автомобиля – аккумуляторная батарея, работающая в паре с генератором. Когда двигатель работает, привод от вала крутит генератор, вырабатывающий необходимую энергию

Генератор работает, преобразовывая энергию вращения вала в электрическую энергию, используя принципы электромагнитной индукции. Для того, чтобы осуществить пуск ДВС, используется энергия аккумулятора.

Во время запуска основным потребителем энергии является стартер. Это устройство является двигателем постоянного тока, предназначенным для прокрутки коленчатого вала, обеспечивающей начало цикла работы ДВС. Принцип работы двигателя постоянного тока основывается на взаимодействии, возникающем между магнитным полем, образующимся в статоре, и токе, протекающем в роторе. Эта сила влияет на ротор, который начинает вращаться, причем его вращение совпадает с вращением магнитного поля, характерного для статора. Таким образом электрическая энергия преобразовывается в механическую, а стартер начинает раскручивать вал двигателя. Как только двигатель запускается и начинает работать генератор, аккумулятор перестает отдавать энергию и начинает ее накапливать. Если генератор не работает или по какой-то причине его мощности недостаточно, аккумулятор продолжает отдавать энергию и разряжаться.

Такой тип двигателя тоже является ДВС, но имеет отличительные особенности, позволяющие резко отделять двигатели, работающие по принципу, изобретенному Рудольфом Дизелем, от прочих ДВС, работающих на «легком» топливе вроде бензина «в автомобилистике» или керосина «в авиации».

Различие в используемом топливе предопределяют различия конструкции. Дело в том, что «солярку» относительно сложно поджечь и добиться ее мгновенного сгорания в обычных условиях, поэтому способ воспламенения от свечи для этого топлива не подходит. Воспламенения дизеля осуществляется за счет его контакта с разогретым до очень большой температуры воздухом. С этой целью используется свойство газов нагреваться при сжатии. Поэтому поршень, работающий на дизельном ДВС, сжимает не топливо, а воздух. Когда степень сжатия доходит до максимума, а сам поршень – до крайней верхней точки, стоящая вместо свечи форсунка «электромагнитный насос» впрыскивает дисперсно распыленное топливо. Оно взаимодействует с горячим кислородом и воспламеняется. Далее происходит работа, характерная и для бензинового ДВС.

При этом мощность ДВС меняется не пропорцией смеси воздуха и топлива, как в бензиновых моторах, а исключительно количеством впрыскиваемого дизеля, в то время как количество воздуха постоянно и не меняется. При этом принцип действия современного бензинового агрегата, оснащенного форсункой, абсолютно не схож с принципом работы дизельного ДВС.

Работающие с бензином электромеханические распылительные насосы предназначены, прежде всего, для более точного отмеривания впрыскиваемого топлива, и взаимодействуют со свечей зажигания. В чем эти два типа ДВС схожи — так это в повышенной требовательности к качеству топлива.

Так как давление воздуха, создаваемое работой поршня дизельного мотора, значительно выше давления, оказываемого сжатой воздушно-бензиновой смесью, такой двигатель более требователен к зазорам между поршнем и стенками цилиндра. К тому же, дизельный двигатель труднее запустить зимой, так как «солярка» под воздействием низких температурных показателей густеет, и форсунка не может достаточно качественно распылить ее.

И современный бензиновый мотор, и его дизельный «родственник» крайне неохотно работают на бензине «ДТ» несоответствующего качества, и даже кратковременное его применение чревато серьезными проблемами с топливной системой.

Современные двигатели внутреннего сгорания – наиболее эффективные устройства перехода тепловой энергии в механическую. Несмотря на то, что большая часть энергии тратится не на непосредственно полезную работу, а на поддержание цикла самого двигателя, человечество пока не научилось массово производить устройства, которые были бы практичнее, мощнее, экономичнее и удобнее, чем ДВС. Вместе с тем, удорожание углеводородных энергоносителей и забота об окружающей среде заставляют искать новые варианты двигателей для легковых автомобилей и общественного транспорта. Наиболее перспективными на данный момент выглядит использование автономных, оснащенных батареями большой емкости, электрических двигателей, КПД которых намного выше, и гибридов таких двигателей с бензиновыми вариантами. Ведь обязательно настанет время, когда использовать углеводороды для приведения в движение личного автотранспорта станет абсолютно невыгодно, и ДВС займут место на музейных полках, как паровозные двигатели – полвека назад.

Рекомендуем другие статьи

Зачем все это нужно знать, чтобы просто водить машину?

Те люди, для которых машина просто как средство передвижения, им этого и не надо, это для тех кто действительно всем этим живет)

Самое популярное

© 2017. Автомобильный журнал «РулиКолеса».

Сообщество людей и машин

Любое использование материалов, размещенных

Материалы: http://rulikolesa.ru/printsip-raboty-dvs/

3 ≫

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

То есть в течение двух оборотов коленчатого вала подпитка его энергией происходит только пол-оборота. Это одна из причин невысокого коэффициента полезного действия четырехтактных двигателей.

Материалы: http://avto-i-avto.ru/ustrojstvo-avto/princip-raboty-dvigatelya-vnutrennego-sgoraniya-kakie-processy-proisxodyat-v-cilindrax.html


Back to top