Современный мотор: меньше, мощнее – но не вечно… - журнал - АБС-авто

1 ≫

Если говорить о тенденциях современного мирового моторостроения, то двигатель внутреннего сгорания остается на лидирующих позициях, хотя справедливости ради надо отметить, что некие попытки «покуситься» на «святая святых» все же существуют – например, уже продается серийный электромобиль Tesla. Но поскольку нефтепромышленность сегодня является ключевой отраслью мировой экономики, доминирование двигателей внутреннего сгорания еще на многие десятилетия может остаться незыблемым.

Немного истории. Грустной.

Современные двигатели конструктивно практически мало изменились со времен «отцов-осно-вателей»: Николауса Августа Отто и Рудольфа Кристиана Карла Дизеля. Сегодня в ходу те же коленчатый вал, шатуны, поршни, цилиндры, клапаны, распределительный механизм.

Поэтому все новшества в двигателестроении опираются на новые материалы и технологии, в том числе связанные с электронным управлением.

Например, если еще 20 лет назад блок цилиндров почти повсеместно был сделан из чугуна, то сегодня чугунный блок встречается редко, плавно перейдя в разряд анахронизмов. В настоящее время блоки делают из алюминия, который и легче, и технологичнее. Сначала были проблемы с прочностью и жесткостью, но их постепенно решили.

Правда, полностью алюминиевые моторы действительно приживаются трудно – очень они чувствительны к смазке, охлаждению, зазорам. А вот алюминиевый блок с чугунными гильзами гораздо менее требователен в эксплуатации. Так что старый добрый чугун, который использовали Отто и Дизель, еще послужит.

Вообще надо отметить, что создание нового двигателя даже традиционной схемы – это процесс очень долгий. Вот и получается, что модельный ряд автомобилей меняется в среднем через четыре-пять лет, а мотор в нем нередко стоит от предыдущих моделей, а то и еще более ранних. И часто даже в новых двигателях используются узлы от старых – например, блок цилиндров. Так что двигатели «живут» долго – бензиновые в среднем 10-15 лет, а дизели легко «доживают» до 20 и даже 30 лет.

И еще. С сожалением приходится признать, что в России практически не было своих разработок двигателей – все бралось «оттуда», из-за границы. Причем часто даже то, что там отвергалось. Результат очевиден – сегодня передового двигателестроения у нас в стране просто не существует. Как и конструкторов для его возрождения.

Все началось с авиации. Авиадвигатель Rolls-Royce Merlin 40-х годов прошлого века с непосредственным впрыском

Успехи, неудачи и тенденции

В современном моторостроении существуют две основные тенденции: первая – сократить вредные выбросы, и вторая – снизить расход топлива. Это взаимосвязанные задачи: сокращая расход, мы автоматически снижаем выбросы.

Но если 10-15 лет назад «вредными выбросами» считались традиционные оксид углерода – СО, оксиды азота – NOx и углеводороды – СН, то сегодня в разряд основных перешел и углекислый газ СО2, создающий «парниковый эффект». И если учесть, что любое углеводородное топливо в конечном счете распадается на воду и углекислый газ – то уменьшить выбросы СО2 можно единственным путем: снижением расхода топлива.

Здесь надо принять во внимание и такой нюанс: КПД у двигателя внутреннего сгорания в целом лишь около 25-30%. Выходит, что только четверть бензина в ДВС тратится на движение – остальные три четверти просто вылетают в трубу. И греют окружающую среду. Поэтому инженеры-моторостроители борются за каждый «лишний» процент с помощью довольно сложных технических решений.

Верный способ – повысить удельные параметры двигателя: проще говоря, получить «одну лошадиную силу» с меньшего количества топлива. Например, одним из основных путей роста эффективности бензинового двигателя является повышение степени сжатия. При росте степени сжатия эффективность сгорания топлива в цилиндре повышается, а значит, возрастает коэффициент полезного действия (КПД) цикла – и двигателя в целом.

В частности, повышение основных параметров двигателей, в том числе путем увеличения степени сжатия, дают системы непосредственного впрыска бензина в цилиндр – впрыск сдвигает режимы детонации, убирает неравномерность подачи топлива и увеличивает наполнение цилиндров.

Когда мы еще были впереди планеты всей: форкамерно-факельное зажигание на Волге — прообраз современного послойного распределения заряда

На самом деле эта идея достаточно старая: непосредственный впрыск широко применялся на авиационных двигателях 40-х годов прошлого века. Инженерам требовалось добиться небывалой по тем временам удельной мощности 70 л.с. с 1 л рабочего объема двигателя при максимальных 2500-3000 об/мин. Сегодня это удельная мощность обычного автомобильного двигателя (хотя и при вдвое больших оборотах, так что авиационный уровень 70-летней давности все еще не превзойден современным автомобилестроением) – а тогда достичь их в авиации было возможно только с помощью непосредственного впрыска.

Но система подачи топлива была механической, т.е. сложной, дорогой и требовавшей постоянных регулировок, что было приемлемо в авиации, но никак не на автомобилях.

Форкамерно-факельный процесс в двигателе Honda CVCC, такие двигатели ставились на автомобили Honda почти до конца 1980-х годов

Кроме того, механическое управление непосредственным впрыском было хорошо при низких оборотах, требовавшихся для тогдашних авиационных двигателей (воздушный винт все же!). А при их росте хотя бы до автомобильных 6000 об/мин механика уже не справлялась.

Собственно, «возвращение» к старой идее в 1990-2000-х годах стало возможным благодаря развитию электроники, позволившей реализовать управление непосредственным впрыском на высоких оборотах двигателя – с внедрением электронных компонентов появилась возможность управлять процессом горения, чего не было ранее.

Карбюратор, да и традиционные системы впрыска – так называемое внешнее смесеобразование, позволяли лишь смешать 15 кг воздуха с 1 кг топлива и подать смесь в цилиндры. И все. А вот электронное управление непосредственным впрыском в цилиндр дает возможность инженеру выбирать – когда вводить топливо, сколько вводить. И даже впрыскивать топливо за один цикл двигателя несколько раз.

Еще в 70-х годах ХХ века конструкторы для экономии топлива предложили использовать принцип «послойного» впрыска, реализованный в виде так называемого «форкамерно-факель-ного зажигания». Идея заключалась в том, что в специальной камере создается богатая смесь, которая при воспламенении от свечи создает факел, поджигающий бедную смесь, подаваемую непосредственно в цилиндр. Машины с такими двигателями (с аббревиатурой СТСС – Compound Vortex Controlled Combustion) разработала и длительное время производила японская Honda, и даже горьковский автозавод некоторое время выпускал «Волги» с форкамерными моторами. Но в итоге к середине 1980-х от этой идеи пришлось отказаться. Ведь приходилось готовить сразу две топливо-воздушных смеси: бедную, которой надо было много, и богатую, которой надо было мало. И подавать их раздельно – при этом в точные временные промежутки. А сложные карбюраторы (а тогда полноценного электронного управления еще не существовало) не прибавляли ни надежности, ни оптимизма по снижению себестоимости. Но основной удар был неожиданным – выяснилось, что помимо СО и СН оксиды азота тоже не слишком полезны. А здесь у «послойников» возникли новые проблемы.

Но всего через 10 лет, примерно к середине 1990-х годов, инженеры смогли вернуться к идее на новом уровне, чтобы с помощью электроники объединить в одном двигателе все три составляющие: непосредственный впрыск, управление процессом горения и послойное смесеобразование, что позволило поднять степень сжатия и выйти на новый уровень.

Первыми создали серийные автомобили с такими моторами в компании Mitsubishi – они имеют обозначение GDI (Gasoline Direct Injection – «система прямого впрыска бензина»). За ними последовали и другие производители. В этих двигателях нет отдельной форкамеры – форсунка впрыскивает бензин в цилиндр под очень высоким давлением. А камера сгорания имеет такую «хитрую» форму, что в зоне у свечи оказывается богатая смесь, а в остальном объеме – бедная.

Казалось бы, все прекрасно: степень сжатия высокая, смесь бедная, как следствие, вредные выбросы заметно снижены, а экономичность улучшена. Но опять начались проблемы с оксидами азота. Дело в том, что традиционные трехкомпонентные нейтрализаторы убирают из выхлопа СО, NOХ и СН только у смеси обычного состава (15 кг воздуха на 1 кг топлива). А вот с возросшими при бедных смесях объемами оксидов азота они уже не справляются. Так что пришлось разрабатывать новые дополнительные катализаторы. Работают они хорошо, хотя требуют специальной жидкости в качестве «топлива». Но хорошо только в том случае, если в бензине нет серы. А если есть – то быстро «умирают». Ведь бензин с полным отсутствием серы пока еще редкость даже в богатых странах.

Поэтому автопроизводители от идеи послойного впрыска вынуждены были отказаться, а проблему уже построенной инфраструктуры по производству этих двигателей (и уже немало потраченных денег) решили путем «перепрошивки» электронного управления впрыском.

Теперь впрыск топлива осуществляется не тогда, когда поршень находится вблизи верхней «мертвой точки», а раньше. И пока поршень проходит весь путь до ВМТ, смесь успевает перемешаться до практически гомогенной.

Так что «попытка № 2» внедрения послойного смесеобразования и управления горением тоже сорвалась. Когда будет третья попытка, неясно. Но то, что она будет – вполне предсказуемо. Ведь уже создано достаточно много таких двигателей, они работают, хотя их возможности пока не реализованы полностью.

Еще одно направление повышения эффективности ДВС – системы регулирования фаз газораспределения. Они получили распространение недавно, в начале 90-х годов ХХ века, но сегодня двигатель без регулирования фаз уже смотрится каким-то анахронизмом.

Логика таких систем понятна – для эффективной работы двигателя при малых оборотах время (продолжительность) и момент открытия впускных и выпускных клапанов должны быть одни, а с повышением оборотов – другие. И сегодня существует много систем, которые регулируют не только время открытия клапанов, но и величину этого открытия. Что делает ДВС эластичным, а автомобиль с ним – экологичным, экономичным и удобным.

Если подводить промежуточный итог, то можно сказать следующее: современный бензиновый ДВС – обязательно с регулируемыми фазами, а лучшие его образцы имеют непосредственный впрыск. Для повышения мощности двигателей нередко используется наддув, который увеличивает количество воздуха, поступающего в цилиндры, и удельную мощность. Существуют две схемы наддува: газотурбинный, когда турбину для привода компрессора раскручивают выхлопные газы, и приводной, когда компрессор приводится непосредственно от двигателя. Приводные компрессоры тоже разные: объемные, винтовые, волновые и т.д. Но большого распространения такие системы так и не получили, хотя известны давно – в отличие от регулирования фаз газораспределения, непосредственного впрыска топлива и турбонаддува.

Ванкель и другие

В принципе, возможны альтернативы старой конструкции, созданной во времена Отто и Дизеля. Но создать работающий двигатель, способный на равных конкурировать с привычной схемой по всем показателям, очень сложно. Двигатели Стирлинга, Баландина и многих других оригинальных схем и решений не получили распространения и оказались на грани забвения.

И хотя новые идеи витают в воздухе, реализовать даже лучшие из них весьма проблематично. Например, роторно-лопастной мотор Вигриянова, который изначально планировалось устанавливать в «прохоровский» «ё-мобиль», пока так и не создан. И для того чтобы (возможно!) довести его до серийного производства, потребуется, по прикидкам, как минимум, 10 лет и весьма неограниченное финансирование. Причем несколько из этих 10 лет надо будет потратить на подготовку специалистов, способных его довести. А поскольку с «неограниченным финансированием», кажется, наступили проблемы, этот двигатель, скорее всего, света так и не увидит.

Роторно-поршневой двигатель Ванкеля стал, пожалуй, единственным примером внедрения в серийное производство ДВС нетрадиционной конструкции. Хотя двигателю данной схемы уже добрых полвека, и за это время многие производители, выпускавшие такие моторы, давно «сошли с дистанции» (последним стал АвтоВАЗ), он и по сей день ставится на автомобили Mazda. Причем компания так долго занимается этим двигателем и добилась таких его показателей, что уже вряд ли кто сможет сделать хотя бы такой же – по цене, надежности и эффективности. И потому он вряд ли когда-нибудь станет массовым.

Ремонт ремонту рознь

Современные двигатели гораздо более надежны, чем те, которые производились, например, 20 лет назад. В них не надо ничего регулировать, что-то менять – они работают без поломок как минимум до окончания срока гарантии.

Но есть нюанс – сегодня срок службы всего автомобиля стал значительно меньше, чем был ранее. Прошли те времена, когда машину покупали «на всю жизнь». Сегодня сложилась тенденция: люди хотят ездить на новой модели машины. И потому автомобили меняются в среднем через 3-5 лет. Соответственно автопроизводителям не имеет смысла делать машину, которая без поломок прослужит 20 лет. Вот и получается, что автопарк обновляется значительно быстрее, чем два-три десятка лет назад.

Так что время двигателей-«миллионников» давно «кануло в Лету» – их просто невыгодно

делать. Да и зачем? Ресурс мотора рассчитывается с учетом возможного пробега автомобиля: в среднем можно говорить максимум о 150 тыс. км.

Процесс непосредственного впрыска уже широко распространился, но пока использовать все его преимущества не удается

Очевидно, ремонт двигателя должен продлить ресурс – но не до бесконечности, а до конца срока службы автомобиля (который тоже закладывается относительно небольшим – не более 10 лет). К чему это приводит? К тому, что некоторые ремонтные процессы становятся просто ненужными, а ремонтное оборудование «отстает» от современных двигателей.

Например, на старых моторах уровень нагрузки составлял 50 л/с с 1 л объема, а на современных (с наддувом) – вдвое больше. При такой разнице удельных мощностей и нагрузок на детали «старое-доброе» уже не работает – нужны новые технологии. Сегодня многие работы стало просто невозможно сделать без современного оборудования – шлифовального, расточного, хонинговального. Оно не слишком хорошо окупается, поэтому многие предпочитают работать по старинке. Но не тут-то было.

Так, для новых моторов нередко используются шатуны с «ломаными» крышками. Традиционные конструкции крышек шатунов, изготовленных отдельно, а потом собранных, для современных высоконагруженных двигателей не подходят – неточно и совсем недешево. И при ремонте традиционных шатунов всегда есть опасность нарушения соосности, что ведет к катастрофическим последствиям для мотора, хотя традиционные шатуны ремонтируются легко. А вот «колотые» – не ремонтируются вообще.

Еще пример – коленчатый вал на старом тихоходном двигателе можно было наварить и прошлифовать. Сейчас это невозможно даже представить: усталостные трещины очень быстро приведут к разрушению всего двигателя. Кроме того, ручная работа с большим количеством операций стоит дорого. А коленчатый вал легкового мотора – деталь массовая, а значит, и недорогая. И делать двойную, а то и тройную работу, чтобы восстановить деталь, которая потом быстро выйдет из строя, по крайней мере, экономически неэффективно.

При этом надо помнить, что просто замена одной детали, вышедшей из строя, не решает проблемы поломки двигателя в целом: такая локальная замена обычно предполагает «гарантию только до ворот». Современный высоконагруженный двигатель – это сложный комплекс, а потому его ремонт должен быть комплексным, с заменой всего «по кругу», чтобы даже самый экономный автовладелец не возвращался через каждые 10-15 тыс. км для замены очередной детали. Вот почему качественно отремонтированный мотор стоит всего лишь на 25-30% меньше нового. Но насколько такой ремонт выгоднее замены для владельца?

Так что современная тенденция в ремонте проглядывается – замена вышедшего из строя узла постепенно побеждает. Причем ремонт «в гараже на коленке» уже не удается. Поэтому неудивительно, что в последние годы значительно возросли требования к квалификации ремонтников, ощутимо выросла стоимость ремонта, а сам процесс стал сводиться больше к замене деталей, нежели к их восстановлению.

Есть и другая тенденция, когда производитель не дает запчастей вообще – только двигатель в сборе. И ремонтникам остается только поменять весь двигатель, вместо того чтобы его ремонтировать. А зачем чинить, если двигатели непрерывно усложняются, а квалифицированная ручная работа дорожает еще быстрее?

И наконец, «контрактные» моторы.

В заключение отметим: модные сегодня «контрактные» моторы становятся похожи на пресловутый «МММ». Нет в мире такой страны-«донора», где бы существовало столько двигателей с большим остатком ресурса. А поскольку двигатели современных легковых автомобилей рассчитаны на конечный и весьма ограниченный пробег, то покупка такого мотора давно стала лотереей – в которой, как известно, выигрывает один из тысяч. В лучшем случае.

А остальным предлагается раз в 10-20 тыс км купить очередной «билет» – пока не будет выбран их «лимит» на ремонт или замену мотора на новый.

  • Александр Хрулев, канд. техн. наук, директор фирмы «АБ-Инжиниринг»

А вы читали?

Борьба с разрухой

Живучая концепция

Турбоуспех

Всеобщее наддувательство

Новости и события

Экспертиза

Автолюбителям

Адрес редакции

111033 Москва, ул. Самокатная, 2а, стр.1, офис 313

Контакты

Тел.: (495) 361-1260

Социальные сети

Поиск по сайту

Чтобы совершить покупку, Вам следует войти или зарегистрироваться

Материалы: http://www.abs-magazine.ru/article/sovremenniy-motor-menjshe-moschnee--no-ne-vechno

2 ≫

НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "РУССКАЯ ТЕХНИЧЕСКАЯ ШКОЛА"

к учебному пособию Слесарь по ремонту автомобилей.

Данная книга предваряет серию изданий, посвящённых устройству обслуживанию и ремонту автомобильной техники. Книга состоит из двух частей. В её первой части - «Устройство и работа двигателя внутреннего сгорания», даются основные понятия и термины, описывается конструкция, работа и техническое обслуживание бензинового и дизельного двигателя, рассматриваются процессы, протекающие в цилиндрах, а также аспекты нагруженности деталей двигателя и силы, действующие на детали. Вторая часть пособия - "Ремонт двигателя внутреннего сгорания" знакомит читателя (учащегося) с основами диагностики, видами и методами ремонта, приёмами слесарных работ. Материал изложен в последовательности его преподавания в НОУ «Русская Техническая Школа» на курсах профессиональной подготовки профессии «Слесарь по ремонту автомобилей».

Пособие ориентировано на учащихся курсов, но может быть интересно более широкому кругу читателей, чья деятельность, так или иначе, связанна с автотранспортом (профессиональные водители, автолюбители, работники автопредприятий и др.), а так же учебным центрам и колледжам. Пособие призвано помочь учащемуся (читателю) освоить новую для себя профессию «Слесарь по ремонту автомобилей», повысить профессиональный уровень, или же самостоятельно изучить устройство автомобиля и автомобильного двигателя.

Изучив данное пособие, Вы должны знать:

  • устройство легкового автомобиля;
  • общее устройство основных узлов и агрегатов легкового автомобиля;
  • устройство двигателя внутреннего сгорания;
  • конструкцию двигателей современных автомобилей и автомобилей, снятых с производства;
  • устройство кривошипно-шатунного и газораспределительного механизмов и основных систем двигателя внутреннего сгорания;
  • конструкцию кривошипно-шатунных и газораспределительных механизмов двигателей современных автомобилей, а также конструкции основных систем двигателей внутреннего сгорания;
  • работу двигателя внутреннего сгорания, его систем и механизмов;
  • процессы, протекающие в цилиндрах работающего двигателя, силы, действующие на детали двигателя и вызывающие их износ;
  • периодичность и виды технического обслуживания двигателя внутреннего сгорания;
  • основные термины и понятия;
  • основные признаки неисправностей, способы их диагностирования и устранения;
  • виды, приёмы и методы ремонта двигателя.

Изучив данное пособие, Вы должны уметь:

  • различать конструкции двигателей внутреннего сгорания, его систем и механизмов;
  • диагностировать типовые неисправности двигателя по внешним признакам;
  • применять на практике полученные знания.

Глава 1. Общие сведения об устройстве автомобиля

    • Кузов
    • Шасси

    • Трансмиссия
    • Ходовая часть
    • Механизмы управления

Глава 2. Автомобильные двигатели

2.1 Классификация поршневых двигателей внутреннего сгорания

Глава 3. Общее устройство двигателя внутреннего сгорания

3.1 Корпус двигателя

3.2 Детали цилиндропоршневой группы и кривошипно-шатунного механизма

3.3 Газораспределительный механизм

3.3.2 Детали клапанной группы

3.3.3 Привод клапанов и их детали

3.3.4 Системы регулирования фаз газораспределения

3.4 Системы охлаждения и смазки двигателя

3.4.1 Назначение, устройство и работа системы охлаждения

3.4.2 Назначение, устройство и работа системы смазки

3.5 Техническое обслуживание двигателя

Глава 4. Работа двигателя внутреннего сгорания

4.1 Рабочий цикл четырёхтактного бензинового двигателя

4.2 Рабочий цикл четырёхтактного дизельного двигателя

4.3 Работа четырёхтактных многоцилиндровых двигателей

4.4 Нагруженность и износ деталей

Автомобиль состоит из трёх основных частей: 1) кузова; 2) шасси и 3) двигателя. Основные части автомобиля, в свою очередь состоят из узлов и агрегатов. Узлы и агрегаты собраны из деталей. Общая компоновка легкового автомобиля с приводом на задние колёса показана на рис. 1.1 (см. версию с иллюстрациямии pdf)

Кузова легковых автомобилей, по большей части имеют несущую конструкцию, которая предполагает крепление основных узлов и агрегатов непосредственно к его корпусу. Немногим реже встречаются легковые автомобили, имеющие кузов с несущим основанием или подрамником, ещё реже - рамную конструкцию. Несущий кузов получил распространение с 50-х годов прошлого столетия.

Корпус несущего кузова рис. 1.2 объемный, из листового металла толщиной 0,5 –2,0 мм, представляет собой жесткую сварную конструкцию, состоящую из отдельных, предварительно собранных узлов: 1)основания (пола) с передней и задней частями корпуса; 2) левой и правой боковин со стойками дверей и задними крыльями; 3) крыши и 4) передних крыльев. Жёсткость кузова обеспечивается наличием в его составе большого числа профильных элементов из штампованных деталей, которые при соединении создают закрытые коробчатые сечения.

Тип кузова определяется числом функциональных отсеков (объёмов) и конструктивным исполнением. Изготовителями выпускаются автомобили с трёх-, двух-, и однообъёмными кузовами.

Трёхобъёмный кузов имеет в своём составе моторный отсек, салон и багажное отделение (например, лимузин, купе, седан, кабриолет, хардтоп).

Двухобъёмный кузов имеет моторный отсек и салон, совмещённый с багажным отделением, расположенным в задней части салона (например, универсал, комби, фастбек, хэтчбек).

В однообъёмном кузове моторный отсек, салон и багажник объединены в одно целое (например, минивэны с центральным расположением силового агрегата, пассажирские фургоны типа «буханка»).

Кузов может быть открытым или закрытым. Открытый тип кузова имеет съёмную крышу или складывающийся верх, выполненный из матерчатого или пластикового тента (например, кабриолет, родстер, фаэтон, ландо).

Грузовые типы кузовов легковых автомобилей также могут быть открытыми – «пикап», или закрытыми – «фургон». Грузовая часть кузова таких автомобилей отделена от водителя и пассажиров стационарной перегородкой.

Некоторые типы кузовов легковых автомобилей представлены на рис. 1.3.

Шасси автомобиля обеспечивает передачу усилия от двигателя к ведущим колёсам, управление автомобилем и его передвижение. В состав шасси входит: 1) силовая передача (трансмиссия); 2) ходовая часть и 3) механизмы управления.

1.2.1 Трансмиссия

Трансмиссия осуществляет передачу крутящего момента от коленчатого вала двигателя к ведущим колёсам, трансформируя его (крутящий момент) в зависимости от условий движения автомобиля. Силовые передачи автомобилей могут иметь существенные отличия.

По степени приспособленности к различным дорожным условиям и назначению, силовые передачи можно разделить на: 1) трансмиссию автомобилей классической компоновки; 2) трансмиссию автомобилей с приводом на передние колёса; 3) трансмиссию автомобилей повышенной проходимости с «колёсной формулой – 4х4»; 4) трансмиссию автомобилей дорожной проходимости с «колёсной формулой – 4х4».

Расположение узлов и агрегатов трансмиссии автомобилей различного назначения показаны на рис. 1.4.

Автомобиль классической компоновки имеет привод на задние колёса и переднее продольное размещение силового агрегата. Трансмиссия такого автомобиля состоит из: 1) сцепления, 2) коробки передач, 3) карданной передачи и 4) ведущего моста, в котором размещается главная передача с дифференциалом и полуосями.

Однодисковое фрикционное сцепление имеет 1) ведомый диск со ступицей, гасителем крутильных колебаний (демпфером) и фрикционными накладками; 2) нажимной диск; 3) диафрагменную нажимную пружину; 4) кожух сцепления и некоторые другие детали.

Общее устройство сцепления легкового автомобиля показано на рис. 1.5.

В автомобилях с автоматическими трансмиссиями используются гидродинамические трансформаторы и коробки передач, действующие автоматически, в зависимости от скоростного и нагрузочного режима движения автомобиля.

В трансмиссиях с ручным или полуавтоматическим переключением передач применяются механические коробки в основном с цилиндрическими шестернями внешнего зацепления.

В автомобилях с автоматическими трансмиссиями применяются как вальные, так и планетарные коробки передач, управление переключением передач в которых осуществляется автоматически многодисковыми сцеплениями, работающими в масляной ванне, и ленточными тормозами, позволяющими переключать передачи без разрыва потока мощности (т.е. без переключения на «нейтральную» передачу). Количество многодисковых сцеплений и ленточных тормозов зависит от числа передач в коробке.

Трансформация передаваемого от двигателя крутящего момента посредством переключения передач в коробке передач достигается введением в зацепление шестерён различного диаметра, меняющих как соотношение между числами оборотов коленчатого вала двигателя и ведущих колёс автомобиля, так и величину тяговых усилий.

Величина изменений указанных характеристик определяется передаточным числом передачи (чем больше передаточное число передачи, тем сильнее изменяется крутящий момент). Передаточное число в общем случае равно отношению числа зубьев (диаметра) ведомой шестерни к числу зубьев (диаметру) ведущей.

Механическая коробка передач имеет корпус, в котором размещаются: 1) первичный, вторичный и промежуточный валы; 2) шестерни передач; 3) синхронизаторы; 4) штоки и вилки переключающего механизма; 5) рычаг переключения передач и другие детали. Общее устройство пятиступенчатой коробки передач показано на рис. 1.6.

Карданная передача состоит из: 1) карданного вала (валов); 2) карданных шарниров или шарниров равных угловых скоростей; 3) промежуточных опор и эластичных муфт карданного вала (валов). Устройство карданной передачи полноприводного автомобиля показано на рис. 1.7.

Дифференциал служит для распределения крутящего момента между ведущими колёсами и позволяет им вращаться с разной скоростью при движении автомобиля в повороте или по неровной дороге. Наибольшее распространение имеют дифференциалы с коническими шестернями. Дифференциал состоит из корпуса (коробки) дифференциала, в котором размещаются: 1) полуосевые шестерни; 2) саттелитовые шестерни и 3) ось саттелитов.

Полуоси передают крутящий момент от дифференциала на ведущие колёса автомобиля.

Главная передача с дифференциалом и полуосями устанавливается в балке ведущего моста. Балка моста имеет центральную часть – картер и полуосевые рукава. Балка является задней осью автомобиля и крепится к кузову через элементы подвески. Балки бывают разъёмные и неразъёмные. Устройство ведущего моста с главной передачей и дифференциалом показано на рис. 1.8.

Трансмиссия автомобилей с приводом на передние колёса отличается от рассмотренной выше тем, что не имеет заднего ведущего моста и карданной передачи. Главная передача и дифференциал размещаются в дополнительном картере коробки передач, а передача усилий от дифференциала на колёса осуществляется через валы привода передних колёс с шарнирами равных угловых скоростей (ШРУС).

Трансмиссия автомобилей повышенной проходимости «внедорожников» с «колёсной формулой – 4х4» дополнительно имеет вторую коробку передач – раздаточную коробку; несколько карданных передач; два ведущих моста – передний и задний, с главными передачами и межколёсными дифференциалами. Раздаточная коробка, как правило, снабжена понижающей передачей и может иметь межосевой дифференциал (для версий с постоянным (т.е. не отключаемым) приводом на все колёса). Также предусматривается механизм блокировки одного или нескольких дифференциалов. На части техники применяются самоблокирующиеся дифференциалы или дифференциалы повышенного трения, а также механизмы отбора мощности на привод вспомогательных механизмов, например лебёдки.

К внедорожникам предъявляются повышенные требования, касающиеся силы тяги, прочности подвески, кузова, а также других узлов и систем. К компоновочным особенностям таких машин, можно отнести короткую базу и высокий клиренс (дорожный просвет) которые, наряду с вышеперечисленными характеристиками, позволяют преодолевать различную степень бездорожья.

Трансмиссия автомобилей дорожной проходимости с «колёсной формулой – 4х4» предназначена для эксплуатации на дорогах с твёрдым покрытием, но может иметь «компромиссную» конструкцию, т.е. одновременно отвечать требованиям как «внедорожника», так и «обычного» автомобиля с приводом на передние или задние колёса. Чаще всего применяется схема, где передние колёса являются основными ведущими, а задний мост подключается автоматически и по мере необходимости. В качестве механизма автоматического подключения заднего моста используются многодисковые вязкостные муфты или механизмы повышенного трения, размещаемые в раздаточной коробке. Сама раздаточная коробка, как правило, монтируется в одном корпусе с коробкой передач.

Трансмиссия современных автомобилей может иметь электронные или электронно-гидравлические устройства управления силой тяги ведущих колёс, к которым относят противобуксовочную систему (ASR). Противобуксовочная система предотвращает проворачивание колёс относительно дорожного покрытия, при излишнем крутящем моменте тем самым, обеспечивая плавное трогание автомобиля с места, оптимальную тягу на колёсах и поддержание курсовой устойчивости автомобиля.

1.2.2 Ходовая часть

Ходовая часть автомобиля состоит из: 1) несущего основания; 2) передней и задней осей; 3) подвески и 4) колёс.

Управляемые колёса у легкового автомобиля – передние.

Управляемые передние колёса устанавливаются на ось с углом развала в вертикальной плоскости, равным 0 - 3° и схождением 2 – 4 мм. Для стабилизации управляемых колёс в среднем положении ось поворота колеса имеет поперечный и продольный наклоны (рис. 1.10.).

Колесо состоит из металлического обода и диска. У штампованных колёс диск с ободом соединяются посредством сварки. У литых и кованых колёс диск и обод выполнен за одно целое. На обод колеса монтируется шина. Шины бывают двух типов – камерные и бескамерные. По способу укладки несущего корда, различают шины радиальные и диагональные, а по форме и рисунку протектора – зимние, летние и всесезонные. Имеются и другие конструктивные различия шин.

1.2.3 Механизмы управления

К механизмам управления относятся рулевое управление и тормоза.

Рулевое управление обеспечивает изменение направления движения автомобиля путём поворота его управляемых колёс. Рулевое управление состоит из: 1) рулевого колеса с валом, установленным в рулевой колонке; 2) рулевого механизма; 3) рулевого привода и некоторых других деталей.

Рулевой механизм обеспечивает передачу усилий от рулевого колеса с валом на детали рулевого привода и далее на рулевую трапецию и управляемые колёса. Большее распространение имеют рулевые механизмы глобоидально-червячного и реечного типа.

К деталям рулевого привода легковых автомобилей с независимой передней подвеской относят рулевую сошку, маятниковый рычаг, среднюю и боковые рулевые тяги, рулевые наконечники, рулевые рычаги поворотных кулаков или стоек и другие детали. В устройстве привода рулевого механизма червячного или реечного типа имеются отличия.

Детали рулевого привода образуют рулевую трапецию. Рулевая трапеция осуществляет одновременный поворот управляемых колёс, при этом, внутреннее к центру поворота колесо должно поворачиваться на больший угол, чем внешнее, для обеспечения качения колёс по окружностям, описанным из одного центра. Следует различать нерасчленённые и расчленённые рулевые трапеции. Нерасчленённую трапецию применяют на автомобилях, у которых управляемые колёса устанавливаются на одной оси, подвешенной через детали подвески к кузову или раме. Расчленённую подвеску используют при независимой подвеске управляемых колёс. Рулевые управления с глобоидально-червячным механизмом и механизмом реечного типа показаны на рис. 1.11.

Тормозные системы автомобиля служат для снижения скорости автомобиля и его остановки, а также для удержания автомобиля в неподвижном состоянии. Замедление автомобиля обеспечивает рабочая тормозная система. Удержание автомобиля в неподвижном состоянии на уклоне при остановке или стоянке обеспечивает стояночная тормозная система. Помимо перечисленных систем, которые можно назвать основными, автотранспортные средства оснащаются другими средствами для торможения. На грузовых автомобилях и прицепных устройствах находят применение аварийные, запасные, вспомогательные, а также различные типы моторных тормозных систем. Широкое распространение имеют антиблокировочные системы (ABS).

Управление рабочей тормозной системой осуществляется от ножной педали тормоза. Передача усилий от педали тормоза к рабочим тормозным механизмам реализуется через гидравлический, пневматический и редко механический привод. В автомобилях, оснащённых системами ABS, ASR и системами управления динамикой автомобиля тормозные усилия регулируются ЭБУ (электронными блоками управления). Электронные системы управления тормозами широко используется в электропневматических и электрогидравлических тормозных механизмах.

Основными узлами и деталями рабочей тормозной системы с гидравлическим приводом являются: 1) главный тормозной цилиндр с бачком для тормозной жидкости; 2) рабочие тормозные цилиндры, соединённые с главным тормозным цилиндром и регулятором тормозных усилий трубопроводами; 3) колёсные тормозные механизмы, состоящие из тормозных барабанов или дисков и тормозных колодок; 4) педаль тормоза и усилитель тормозов вакуумного или иного типа.

Стояночный тормоз имеет механический привод и при включении блокирует задние колёса автомобиля. В ряде устаревших конструкций стояночный тормоз воздействует на карданный вал (в настоящее время применение трансмиссионного стояночного тормоза запрещено Правилами ЕЭК ООН и ГОСТ РФ). На грузовых автомобилях с пневмотормозами стояночный тормоз приводится в действие при помощи энергоаккумулятора.

Общее устройство рабочей и стояночной тормозной системы легкового автомобиля показано на рис. 1.12.

Двигатель является на автомобиле основным источником механической энергии и используется в качестве силовой установки, приводящей машину в движение. На автотранспортные средства устанавливают двигатели различных конструкций, среди которых большее распространение получили поршневые двигатели внутреннего сгорания (ДВС). Гораздо в меньшей степени используются роторные двигатели внутреннего сгорания (двигатели Ванкеля), и всё большее число производителей склоняется к применению комбинированных (гибридных) установок, объединяющих в себе поршневой ДВС и электродвигатель. На части техники устанавливаются газотурбинные двигатели и электродвигатели.

Поршневыми двигателями внутреннего сгорания (рис. 2.1) комплектуется большинство современных автомобилей. В поршневых двигателях давление газов, образующееся от сгорания топлива в камере сгорания, воспринимается поршнем, движущимся в цилиндре. Возвратно-поступательное движение поршня посредством кривошипно-шатунного механизма преобразуется во вращательное движение коленчатого вала.

К поршневым ДВС относятся дизельные двигатели, с самовоспламенением топливно-воздушной смеси и двигатели Отто, с воспламенением смеси от постороннего источника тепла, например от электрической искры, образующейся между электродами свечи системы зажигания. Такие двигатели называют двигателями с искровым зажиганием. По конструкции кривошипно-шатунного и газораспределительного механизмов дизельные двигатели и двигатели Отто практически не отличаются.

Роторные двигатели внутреннего сгорания (рис. 2.2) имеют ряд преимуществ перед поршневыми двигателями и ряд недостатков, сдерживающих их широкое применение. С двигателем экспериментировали многие известные автомобилестроительные фирмы, включая Волжский Автомобильный Завод (ВАЗ), но на сегодняшний день, пожалуй, только «Мазда» серийно устанавливает их на спортивные версии своих машин.

В двигателе Ванкеля роль поршня выполняет ротор, имеющий форму равностороннего треугольника со скруглёнными вершинами и слегка выпуклыми сторонами, вращающийся в овальном корпусе (цилиндре) по сложной траектории (эпитрохоиде).

Комбинированные (гибридные) двигатели имеют в своём составе двигатель внутреннего сгорания и электродвигатель, осуществляющий передачу крутящего момента на коленчатый вал ДВС или непосредственно на ведущие колёса автомобиля. В силу свойства «обратимости электрических машин» электродвигатель, в подобных устройствах, может выполнять функции как стартера, осуществляя вращение коленчатого вала ДВС при запуске и, в определённых условиях, обеспечивая движение автомобиля без его участия, так и генератора, работая на подзарядку аккумуляторных батарей при установившихся режимах движения. Автомобили подобных конструкций отличает высокая топливная экономичность и соответствие современным требованиям экологической безопасности.

Термин «комбинированный двигатель» также применяется для поршневых двигателей, имеющих в своём составе газовую турбину и компрессор (турбокомпрессорный двигатель).

Газотурбинные двигатели, как самостоятельные силовые установки, широкого распространения на автомобильной технике не имеют. Их применение в основном ограничено в качестве вспомогательных агрегатов поршневых двигателей. Например, газотурбинные системы наддува ДВС. Схема турбокомпрессорного двигателя (турбокомпрессора) показана на рис. 2.3.

Электродвигатели в качестве самостоятельной силовой установки по объективным для сегодняшнего дня причинам на серийных моделях автомобилей практически не используются.

Поршневые двигатели внутреннего сгорания можно условно классифицировать:

1) по способу смесеобразования и виду применяемого топлива; 2) по способу осуществления рабочего цикла; 3) по числу цилиндров и их расположению; 4) по способу охлаждения и смазки деталей и т.п.

По способу смесеобразования двигатели внутреннего сгорания делятся на двигатели с внешним смесеобразованием и двигатели с внутренним смесеобразованием.

Автомобильные двигатели с внешним смесеобразованием работают на лёгком топливе, в основном на бензине или газе. Приготовление топливно-воздушной смеси, и её дозирование осуществляют карбюраторные, газобаллонные и инжекторные системы питания. Образование топливно-воздушной смеси происходит вне цилиндра двигателя - в смесительной камере карбюратора, в специальном смесителе или непосредственно во впускном коллекторе. Смесь в цилиндре воспламеняется в конце такта сжатия, принудительно от электрической искры.

Автомобильные двигатели с внутренним смесеобразованием работают, в основном на дизельном топливе, которое относится к тяжёлым видам топлив. К этому же виду топлива относят «солярку», мазут и сырую нефть. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина, где зажигание смеси осуществляется от электрической искры.

По способу осуществления рабочего цикла следует различать двухтактные и четырёхтактные двигатели. У первых, рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала. У вторых, рабочий цикл совершается за четыре хода поршня, т.е. за два оборота коленчатого вала. Под рабочим циклом двигателя следует понимать совокупность процессов, протекающих в цилиндрах двигателя и «заставляющих» его работать.

Подавляющее большинство современных автомобилей оборудуются четырёхтактными двигателями.

По числу цилиндров и их расположению двигатели делятся на двух – и многоцилиндровые с рядным, многорядным, вертикальным, наклонным, звездообразным и горизонтальным расположением цилиндров (рис. 2.4).

Многорядные двигатели можно разделить на: 1) V – образные двухрядные двигатели, с углом развала цилиндров 90 и менее градусов; 2) U – образные двухрядные двигатели; 3) оппозитные двигатели с расположением цилиндров под углом 180 градусов друг к другу; 4) W – образные трёхрядные двигатели; и 5) двигатели с большим числом рядов цилиндров.

Многорядное расположение цилиндров двигателя позволяет уменьшить габаритную длину двигателя при сохранении числа цилиндров. Оппозитное, т.е. лежачее расположение цилиндров, уменьшает габаритную высоту двигателя, что в свою очередь позволяет снизить центр тяжести автомобиля и, тем самым улучшить его устойчивость.

По способу охлаждения и смазки деталей различают двигатели с воздушным и жидкостным охлаждением, с принудительной смазкой деталей, смазкой разбрызгиванием и комбинированной смазкой.

Также имеются и иные конструктивные отличия двигателей.

Автомобильные двигатели имеют следующие механизмы и системы: 1). Кривошипно-шатунный механизм (КШМ); 2). Газораспределительный механизм (ГРМ); 3). Систему охлаждения, смазки, вентиляции картера, питания, зажигания, рециркуляции отработавших газов, пуска и некоторые другие.

Кривошипно-шатунный и газораспределительный механизмы обеспечивают рабочий цикл (работу) двигателя. Системы двигателя, в свою очередь, обеспечивают работу КШМ и ГРМ.

Механизмы и системы двигателя состоят из отдельных деталей и узлов. Основанием для крепления деталей и узлов перечисленных систем и механизмов является корпус двигателя.

Поршневой двигатель внутреннего сгорания классической (традиционной) конструкции имеет корпус, состоящий из блока цилиндров (блок-картера) и головки блока цилиндров, закрытых, сверху - клапанной крышкой, снизу - масляным поддоном, спереди и сзади - передней и задней крышками коленчатого вала с самоподжимными сальниками. Корпус может иметь и иную конструкцию. Например, нижняя часть картера может быть разъёмной, и в этом случае корпус будет состоять из трёх составных частей: блока цилиндров (средней части корпуса), головки блока цилиндров (верхней части корпуса) и фундаментной рамы (нижней части корпуса) и соответствующих крышек. Встречаются двигатели с моноблочной конструкцией корпуса, в котором блок цилиндров и головка блока цилиндров выполняются в виде единой, неразъёмной отливки. Многообразие конструкций двигателей различных моторостроительных предприятий, предполагает различные подходы к их ремонту.

Корпусные детали двигателя являются основанием для крепления деталей кривошипно-шатунного и газораспределительного механизмов, а так же узлов и деталей систем смазки, охлаждения, зажигания, питания и др. Детали корпуса двигателя показаны на рис. 3.1.

Блоки цилиндров отливаются из серого легированного чугуна или высококремнистых алюминиевых сплавов (силуминов). Некоторыми фирмами практикуется изготовление блоков из металлокерамики. Блоки цилиндров двигателя с жидкостным охлаждением имеют двойные стенки, образующие «рубашку охлаждения». Рубашка охлаждения заполняется охлаждающей жидкостью.

Блоки цилиндров двигателей с воздушным охлаждением цилиндров имеют оребрение. Цилиндры, как правило, заключены в кожух, через который вентилятором системы охлаждения прокачивается воздух.

Головки блоков цилиндров бензиновых и дизельных двигателей легковых автомобилей отливаются из алюминиевых сплавов и реже из чугуна и, за редким исключением, имеют моноблочную конструкцию, т.е. на один ряд цилиндров двигателя устанавливается одна, единая для всех цилиндров, головка. На части дизельных двигателях каждый цилиндр (или пара цилиндров) может иметь собственную головку. Головка через термостойкую прокладку крепится к привалочной плоскости блока цилиндров болтами, если блок чугунный, или гайками через шпильки, если блок алюминиевый. Болты крепления головки изготавливаются из высокопрочных сталей и при небольших диаметрах должны обеспечивать значительные усилия (моменты) затяжки. Усилия затяжки болтов (гаек) крепления головки блока регламентируется производителем и, для большинства автомобилей, в среднем составляют 9,0 – 10,0 кгс x м. Стенки головки блока двойные. Рубашка охлаждения, образованная двойными стенками головки блока соединяется с рубашкой охлаждения блока цилиндров. В головке блока выполняются камеры сгорания. На головке размещают детали газораспределительного механизма, включая распределительный вал (валы), впускные и выпускные клапаны и детали привода клапанов.

К деталям цилиндропоршневой группы двигателя относятся: цилиндры (гильзы цилиндров); поршни; поршневые кольца; поршневые пальцы (рис. 3.2).

К деталям кривошипно-шатунного механизма двигателя относятся: шатуны и крышки шатунов; коленчатый вал и крышки коленчатого вала и маховик. Часть двигателей с малым числом цилиндров (до четырёх) могут иметь балансирные валы, которые также следует относить к деталям КШМ.

Гильзы, которые устанавливаются непосредственно в рубашку охлаждения блока цилиндров, носят название «мокрых». Наружная поверхность «мокрых» гильз омывается охлаждающей жидкостью. Мокрые гильзы устанавливаются в отверстия блока с зазором, и удерживаются от перемещения в этом отверстии головкой блока цилиндров. Для надёжного закрепления гильзы головкой блока цилиндров верхний бурт гильзы должен выступать за верхнюю плоскость блока на величину, регламентируемую техническими условиями (для разных типов двигателей эта величина лежит в пределах 0,02 – 0,12мм).

Гильзы, наружная поверхность которых не контактирует с охлаждающей жидкостью, носят название – «сухие гильзы». «Сухие» гильзы устанавливаются в блок с натягом. Сборка соединений с натягом означает, что диаметр втулки (гильзы) больше диаметра посадочного отверстия, в которое эта втулка устанавливается. Величина натяга измеряется в миллиметрах и определяется как разница диаметров сопрягаемых деталей. Натяг обеспечивает неподвижность гильзы при тепловом расширении материала блока в процессе прогрева работающего двигателя.

Внутренняя рабочая часть цилиндра обрабатывается на специальном оборудовании до определённой чистоты (шероховатости) и имеет ровную поверхность, которую называют «зеркалом цилиндра». При финишной (окончательной) обработке цилиндра на его поверхность наносятся пространственно ориентированные риски, способствующие удержанию в них масла нужного для смазки поршневых колец и поршней.

На рабочие поверхности алюминиевых цилиндров могут наноситься дополнительные покрытия типа «никасил» (никель с кремнием) или кремниевые покрытия, получаемые кислотным травлением поверхности. Рабочие поверхности чугунных цилиндров, как правило, термической обработке не подвергаются и покрытий не имеют. Технология ремонта алюминиевых и чугунных цилиндров может существенно отличаться.

По внутреннему диаметру цилиндры номинальных размеров разбиваются заводом изготовителем на категории (классы) с шагом 0,01 мм. Категории цилиндров обозначаются обычно буквами латинского алфавита (A, B, C…..) и клеймятся на привалочной плоскости картера двигателя или ином месте. Класс (категория, группа) цилиндра, так же может обозначаться краской, цифрой, печатным оттиском, или другим способом.

На рис. 3.3а. показаны корпусные детали рядного шестицилиндрового двигателя, гильзованого мокрыми чугунными гильзами. На рис. 3.3 б. показан блок-картер рядного четырёхцилиндрового двигателя традиционной конструкции с цилиндрами, выполненными заодно с блоком.

Поршни воспринимают давление газов, обеспечивают передачу усилий на шатун и герметизируют камеру сгорания.

Верхняя часть поршня носит название - головка поршня, нижняя направляющая часть поршня называется юбкой поршня. На рис. 3.4. показана конструкция поршня а) бензинового двигателя и б) дизельного двигателя с полураздельной камерой сгорания.

Головка поршня – наиболее усиленная часть поршня, где толщина стенок может достигать нескольких мм. На головке поршня выполнены канавки под поршневые кольца. В нижней канавке маслосъёмного кольца прорезаются дренажные отверстия для отвода масла. В головку поршня, для повышения износостойкости поршня, могут заделываться чугунные вставки, а на днище поршня (верхняя часть головки) и зону «огневого пояса» (часть головки поршня от днища до канавки первого компрессионного кольца) наноситься специальные покрытия. Днище поршня может иметь плоскую, выпуклую, вогнутую и иную форму. В днище поршней части двигателей выполняются углубления под клапаны (цековки) или камеры сгорания.

Юбка поршня. Толщина стенок юбки современных поршней может быть меньше 1,5 мм. Для лучшей приработки поршня в цилиндре на юбку поршня напыляют тонкий слой олова или графитовое покрытие. Для этих же целей на юбке поршня выполняют «накатку» в виде микроканавок глубиной до 0,02 мм, в которых при работе двигателя удерживается масло. Юбки поршней двигателей с цельноалюминиевыми цилиндрами могут покрываться тонким слоем железа. В средней части юбки имеются отверстия под поршневой палец. Стенки юбки у отверстия под поршневой палец имеют утолщения (приливы), именуемые бобышками. У большинства поршней ось отверстия под поршневой палец смещена относительно плоскости симметрии поршня в сторону на 0,5 – 2,5 мм.

Поршни автомобилей российского, европейского и американского производства часто изготавливаются со стальными терморегулирующими вставками в юбке у отверстия под поршневой палец. Вставки, имеющие по сравнению с материалом поршня, меньший коэффициент теплового расширения, препятствуют расширению юбки поршня при нагревании. С той же целью уменьшения теплопередачи от головки поршня к юбке с наружной стороны бобышек выполняются подрезы, которые носят название «холодильников», а по нижней канавке маслосъёмного кольца или на юбке поршня, сквозные разрезы «Т» - или «П» – образной формы.

Юбка поршня в плане имеет форму овала, большая ось которого перпендикулярна оси отверстия поршневого пальца. В продольном разрезе поршень имеет форму конуса, расширяющегося к юбке. Эллипсность юбки и разница диаметров поршня в верхней и нижней его части может быть более 0,50 мм.

Поршень устанавливается в цилиндр с зазором. Зазор должен компенсировать расширение поршня при нагревании и обеспечивать присутствие масла между трущимися деталями. Величина установочного зазора строго регламентируется заводом изготовителем и в зависимости от конструкции того или иного двигателя лежит в пределах 0,01 – 0,09 мм (большинство двигателей будут нормально работать с зазором 0,04 – 0,06 мм.). Установочный зазор между стенкой цилиндра и поршнем обеспечивается по большей оси овала юбки поршня.

Поршни для одного двигателя не должны отличаться по массе более чем на 2-4 грамма или не более чем на 1 -1,5% среднего арифметического от суммы масс всех поршней данного двигателя.

Заводы выпускают поршни номинального и ремонтного размеров. По наружному диаметру и диаметру отверстия под поршневой палец поршни номинального размера, разбиваются на категории (классы). Информация о размерности и весе поршня, а так же иная информация, выбивается на днище поршня (рис. 3.5).

Кольца имеют прямой вырез, называемый замком кольца. Замок позволяет кольцу пружинить.

На поршнях современных двигателей устанавливают по два – три кольца. По назначению кольца делятся на компрессионные кольца и маслосъёмные кольца. Компрессионные кольца устанавливаются в верхней части головки поршня и отвечают за уплотнение поршня в цилиндре. Маслосъёмные кольца устанавливаются под компрессионными кольцами и отвечают за снятие излишек масла со стенок цилиндров. Излишки масла через прорези в кольце и отверстия в поршневой канавке маслосъёмного кольца сбрасываются под поршень и далее стекают в картер двигателя. Маслосъёмные кольца – составные и имеют в своём составе непосредственно кольцо (или два кольца - диска) и пружинный расширитель.

Рабочую поверхность верхних компрессионных колец, работающих в условиях высоких температур и при недостатке смазки, покрывают слоем пористого хрома или молибденом для повышения износоустойчивости. Кромки рабочих поверхностей колец имеют сложную форму в связи с чем, кольца должны устанавливаться на поршень в строго определённом положении. Неправильная установка колец может привести к прорыву газов в картер двигателя, снижению компрессии и повышению расхода масла на угар. Для правильной установки кольца на поршень на верхней части кольца делается специальная метка («тор», «верх»). При отсутствии меток следует обратиться к инструкции завода-изготовителя колец.

Заводы выпускают в продажу кольца номинальных и ремонтных размеров. На верхнюю часть колец ремонтных размеров ставится цифровая маркировка (например, 40 или 80), соответствующая увеличению наружного диаметра кольца (цилиндра) на ремонтный размер (на 0,4 или 0,8 мм, соответственно).

По способу соединения поршневого пальца с верхней головкой шатуна и с поршнем различают поршневые пальцы плавающего типа и пальцы, запрессованные в верхнюю головку шатуна.

Пальцы плавающего типа устанавливаются в верхнюю головку шатуна через, запрессованную в отверстие головки, сталебронзовую, сталеалюминевую или бронзовую втулку. Между втулкой и пальцем должен быть зазор, величина которого регламентируется техническими условиями. В бобышки поршня палец вставляется с небольшим натягом. От осевого перемещения палец удерживается стопорными кольцами.

Пальцы, запрессованные в верхнюю головку шатуна, в бобышках поршня перемещаются свободно, а в головку шатуна устанавливаются со значительным натягом. Натяг должен обеспечивать неподвижное положение пальца при существенных нагрузках, действующих на детали.

По наружному диаметру пальцы подразделяются на классы, через 0,004 мм. Класс маркируется краской на торце пальца или, если позволяет толщина стенки, цифрой или буквой.

Коленчатые валы изготавливаются из высокопрочных легированных углеродистых сталей методом ковки или точным литьём из особого чугуна с шаровидным графитом.

Коленчатый вал состоит из коренных и шатунных шеек, соединяющих их щёк, а также противовесов, переднего носка и заднего фланца. Коренные и шатунные шейки со щеками и противовесами образуют колено. Для подачи масла к шатунным подшипникам в щеках вала от коренных шеек просверливаются специальные каналы. Каналы снабжаются грязеуловителями. Грязеуловители способствуют дополнительной центробежной очистке масла, поступающего к шатунной шейке, и представляют собой просверленный или отлитый в шатунной шейке горизонтальный или наклонный канал, выходы из которого закрыты заглушками. Смазка шеек вала принудительная под давлением. Места перехода шеек к щёкам называются галтелями. Для уменьшения вероятности поломки вала, галтели делают закруглёнными и по галтели выполняют радиусную канавку глубиной 0,2 – 0,5 мм. Канавка уменьшает напряжения в металле в зоне соединения щеки и шейки. При ремонте коленчатого вала (шлифовке шеек) глубина канавок и радиус закругления галтелей должны быть восстановлены. Коренными шейками вал устанавливают в опорах картера двигателя и закрепляют крышками. Крышки коленчатого вала не взаимозаменяемы и должны устанавливаться на опору только в одном положении. Вал с наибольшим числом опор из возможного их количества называется полноопорным. К шатунным шейкам коленчатого вала крепится шатун. В двигателях с V – образным блоком цилиндров на одну шатунную шейку коленчатого вала может крепиться два шатуна. На одну шатунную шейку может приходиться один или два противовеса. Противовесы служат для разгрузки коренных подшипников от действия моментов, создаваемых центробежными силами от вращающихся частей и сил инерции поступательно движущихся частей. Расположение кривошипов КВ и их число зависит числа и расположения цилиндров двигателя. В табл. 3.1. приведены схемы расположения кривошипов коленчатых валов разных двигателей и указан возможный порядок работы цилиндров двигателей.

Поверхности шеек чугунных коленчатых валов закаливаются токами высокой частоты, а стальных азотируются на глубину до 1,50 мм для придания им прочности и износостойкости (число ремонтов коленчатого вала зависит от глубины закалки его шеек). На передний носок КВ устанавливают шкив привода вентилятора и генератора, зубчатое колесо привода масляного насоса, звёздочку цепи, масляный отражатель и гаситель крутильных колебаний. На задний фланец КВ болтами или гайками через шпильки крепится маховик. Передний носок и задний фланец КВ уплотняется сальниками.

На рис. 3.7. показаны полноопорные валы четырёх и шестицилиндровых двигателей с полным и неполным числом противовесов. На рис. 3.8. показан фрагмент коленчатого вала V-образного двигателя с маховиком и деталями поршневой и шатунной группы.

От осевого перемещения коленчатый вал удерживается упорными подшипниками, выполненными в виде колец или полуколец и устанавливаемых в центральной или задней коренной опоре коленчатого вала. Материал, из которого изготавливаются упорные подшипники, идентичен материалу вкладышей.

Гораздо реже в автомобильном двигателестроении, для коленчатых валов применяют подшипники качения (шариковые, роликовые или игольчатые). Существенным преимуществом подобной конструкции является то, что подшипники качения не требуют смазки под давлением.

Механизм газораспределения должен обеспечивать очистку цилиндров от продуктов сгорания (отработавших газов) на такте выпуска и наполнение цилиндров новой порцией топливно-воздушной смеси на такте впуска. В двигателях внутреннего сгорания применяют клапанное, золотниковое и комбинированное газораспределение. Благодаря сравнительно простому устройству и высокой надёжности клапанное газораспределение получило большее распространение.

Находят применение следующие типы ГРМ: 1) с верхним расположением клапанов (двигатели OHV); 2) с нижним расположением клапанов (встречаются редко); 3) размещением распределительного вала на головке блока цилиндров (двигатели ОНС); 4) размещением распределительного вала в блоке цилиндров.

По числу клапанов, приходящихся на один цилиндр двигателя, следует различать газораспределительные системы классической конструкции - с двумя клапанами на цилиндр, и многоклапанные системы, с тремя – шестью клапанами на цилиндр. Для привода многоклапанных систем используются схемы DOHC – двигатели с двумя верхними распределительными валами (рис. 3.9).

Детали ГРМ для удобства можно объединить в следующие группы: 1). Распределительный вал и детали привода РВ; 2). Детали клапанной группы; 3). Детали привода клапанов и передаточные детали.

3.3.1. Распределительный вал и детали привода распределительного вала.

Распределительный вал (РВ) обеспечивает своевременное открытие и закрытие клапанов. Вал классической конструкции кулачкового типа имеет кулачки управления впускными и выпускными клапанами и опорные шейки (рис. 3.10). На валу может располагаться шестерёнка привода масляного насоса и распределителя зажигания и эксцентрик привода топливного насоса карбюраторных двигателей. Валы изготавливаются из сталей методом штамповки или отливаются из высокопрочного чугуна, легированного хромом, никелем, молибденом и др. металлами. Шейки и кулачки вала шлифуются и подвергаются закалке отбеливанием или токами высокой частоты. Опорными шейками вал устанавливается в опорах (подшипниках скольжения) и закрепляется крышками. Опоры и крышки опор могут быть объединены между собой в корпус подшипников распределительного вала. От осевого перемещения распределительный вал удерживается упорным подшипником. Смазка опор осуществляется под давлением. Масло в подшипник поступает по каналам, выполненным в опорах и/или в самом валу. Кулачки смазываются принудительно (под давлением) или разбрызгиванием.

Распределительный вал приводится в движение от коленчатого вала двигателя зубчатым ремнём, цепью или зубчатой передачей (шестернями).

Одна из схем ременного и цепного привода РВ, а также детали привода, показаны на рис. 3.11а и рис. 3.11б. Некоторые другие схемы ременного привода РВ современных автомобилей показаны на рис. рис. 3.11c.

Передаточное отношение шестерён (звёздочек) коленчатого и распределительного валов равна двум (т.е. скорость вращения коленчатого вала в два раза выше, чем распределительного). Звёздочки и зубчатые шестерни валов имеют установочные метки, именуемые метками фаз газораспределения. При сборке двигателя валы двигателя должны быть установлены строго по этим меткам.

Цепной и ременный привод РВ имеют систему натяжения цепи (ремня).

3.3.2. Детали клапанной группы.

К деталям клапанной группы относятся впускные и выпускные клапаны, сёдла клапанов, направляющие втулки клапанов со стопорными кольцами и уплотнениями клапана (сальниками клапана), клапанные пружины, тарелки, шайбы и конические разрезные «сухари» (рис. 3.12).

3.3.3. Привод клапанов и их детали.

В зависимости от конструкции газораспределительного механизма следует различать три основных типа механических приводов клапанов:

  • Привод с помощью коромысел;
  • Привод с помощью рычагов;
  • Привод с помощью цилиндрических толкателей.

Привод клапанов с помощью коромысел (рис. 3.13) имеет следующие детали: коромысло, ось коромысел, штангу, промежуточный толкатель.

Привод с помощью рычагов (рис. 3.14) имеет следующие детали: рычаг, опору рычага и прижимную пружину.

Рычаг изготавливается из стали. Поверхность рычага, контактирующая с кулачком распределительного вала, упрочняется закалкой токами высокой частоты или иным образом. Одним плечом рычаг опирается на торец клапана, другим на шаровидную головку опорного болта или втулку гидравлического толкателя (гидрокомпенсатора). Упорный болт вкручивается в стальную втулку, установленную на резьбе в теле головки блока цилиндров и удерживается от самопроизвольного выкручивания контргайкой. С помощью упорного болта производится регулировка теплового зазора в приводе клапанов.

Привод с помощью цилиндрических толкателей (рис. 3.15). Цилиндрический толкатель представляет собой стальной стаканчик, установленный на стержне клапана в специальном отверстии головки блока. На толкатель через стальную регулировочную шайбу воздействует кулачок распределительного вала (в некоторых конструкциях регулировочная шайба устанавливается под толкатель на торец стержня клапана).

Привод клапанов с гидравлическими толкателями. Гидравлические толкатели могут устанавливаться со всеми типами приводов клапанов (рис. 3.16). В конструкциях, где применяются гидротолкатели, отсутствует зазор в приводе, что обеспечивает безударное набегание и сход кулачка распределительного вала с толкателя, уменьшает шум при работе и устраняет колебания в механизме.

3.3.4. Системы регулирования фаз газораспределения

Для получения оптимальных характеристик двигателя при различных частотах вращения коленчатого вала возникает необходимость управлять временем открытия – закрытия впускных и выпускных клапанов (фазами газораспределения). При относительном увеличении времени (или степени) открытия впускного клапана улучшается наполнение цилиндра топливно-воздушной смесью. При относительном увеличении времени (или степени) открытия выпускного клапана, улучшается очистка цилиндра от отработавших газов. Существует достаточно много конструкций, позволяющих манипулировать работой клапанов. Схема работы одного из них показана на рис. 3.17. Конструкция позволяет изменять фазы газораспределения путём изменения высоты подъёма клапанов, что достигается применением распределительного вала с кулачками, имеющими криволинейный профиль. Распределительный вал в подобных конструкциях имеет возможность осевого перемещения.

При работе двигателя на детали кривошипно-шатунного и газораспределительного механизмов действуют знакопеременные силы, высокая температура, давление, агрессивная среда рабочих, отработанных и картерных газов.

Работа двигателя при температуре охлаждающей жидкости ниже или выше рабочей температуры приводит к ухудшению характеристик двигателя и повышенному износу его деталей. Перегрев двигателя, сопровождающийся закипанием жидкости в системе охлаждения, может иметь и более серьёзные последствия. Из-за уменьшения зазоров в паре трения поршень – цилиндр, усиливается трение между деталями, выгорает смазка, становится возможным заклинивание поршня в цилиндре, «сход» хрома с верхнего компрессионного кольца, появление задиров на юбке поршня и стенках цилиндров, а также частичное оплавление и деформация поршня. Вследствие возникающих напряжений на стыке привалочных плоскостей блока и головки блока возможны деформации этих плоскостей с последующим прогоранием прокладки головки блока. Перегрев головки блока приводит к деформации посадочных отверстий сёдел выпускных клапанов, потере натяга седла вплоть до его выпадения из гнезда.

Последствия масляного голодания могут быть не менее катастрофичны. Отсутствие масла в паре трения шейка коленчатого вала – подшипник, через непродолжительное время приведёт либо к заклиниванию коленчатого вала в опорах, либо к проворачиванию в опорах вкладышей. Недостаток смазки других деталей двигателя ускоряет их износ.

Для эффективной и продолжительной работы двигателя должно быть обеспечено соответствующее охлаждение и смазка его деталей.

3.4.1. Назначение, устройство и работа системы охлаждения.

Тепло от нагретых деталей двигателя на 60 – 70% отводится системой охлаждения двигателя. Оставшиеся 30 – 40% тепла отводятся системой смазки и рассеиваются от корпусных деталей двигателя в подкапотное пространство.

Система охлаждения может быть воздушной или жидкостной.

При воздушной системе охлаждения тепло от деталей двигателя и, в первую очередь, от камер сгорания и цилиндров передаётся обдувающему их воздуху, который циркулирует в воздушной рубашке охлаждения. Рубашку охлаждения образуют рёбра охлаждения цилиндров и кожух, внутрь которого эти цилиндры помещаются (рис. 3.18). Воздух через кожух прокачивается вентилятором системы охлаждения с приводом от электродвигателя или ременным приводом от коленчатого вала двигателя. Количество воздуха на входе в рубашку охлаждения регулируется заслонками, управляемыми водителем вручную, или автоматически, с помощью термостатов или иных специальных приспособлений. Цилиндр воздушного охлаждения и простейшая схема воздушной системы охлаждения показана на рисунке рис. 3.18.

Жидкостная система охлаждения имеет рубашку охлаждения, радиатор с расширительным бачком и паровоздушным клапаном горловины радиатора (расширительного бачка), жалюзи радиатора, насос охлаждающей жидкости, термостат, вентилятор, соединительные патрубки и шланги. Рубашка охлаждения, радиатор, патрубки и шланги заполняются охлаждающей жидкостью. Общее устройство жидкостной системы охлаждения показано на рис. 3.19.

При работе двигателя насос, приводимый в движение от коленчатого вала через ременную передачу, создаёт циркуляцию охлаждающей жидкости. Если двигатель «холодный» жидкость не попадает в радиатор и циркулирует по малому кругу рубашки охлаждения. По мере прогрева двигателя часть жидкости, а затем и вся жидкость начинает циркулировать через радиатор по большому кругу рубашки охлаждения. В радиаторе жидкость охлаждается потоком воздуха, создаваемым вентилятором, а при движении автомобиля ещё и встречным потоком воздуха. Охлаждённая жидкость забирается из радиатора насосом и вновь подаётся в рубашку охлаждения.

Насос охлаждающей жидкости традиционной конструкции – центробежного типа, обычно состоит из корпуса и крышки (рис. 3.20). Корпус крепится к блоку цилиндров двигателя и соединяется выпускным отверстием с рубашкой охлаждения блока. Крышка насоса крепится к корпусу и имеет вал, установленный в крышке на подшипнике и, уплотнённый с внутренней стороны сальником. На внутреннем конце вала крепится рабочее колесо - крыльчатка. На внешнем конце вала устанавливается фланец шкива привода насоса и вентилятора. Привод насоса осуществляется от коленчатого вала клиновидным ремнём или зубчатым ремнём ГРМ.

Простота конструкции насоса обусловливает его высокую надёжность. К основным неисправностям насоса относятся неисправность подшипника и/или неисправность сальника вала. Неисправность подшипника, как правило, сопровождается повышенным шумом при работе и люфтами вала насоса. Признаком износа сальника является вытекание охлаждающей жидкости через контрольное отверстие в корпусе и/или по валу насоса наружу рубашки охлаждения двигателя.

Вентилятор системы охлаждения с электрическим приводом включается от датчика управления вентилятором (термореле) при достижении жидкостью охлаждения верхнего предела рабочей температуры и выключается при охлаждении жидкости до нижнего предела рабочей температуры. Механический привод вентилятора обеспечивает его постоянную работу при работающем двигателе независимо от температуры охлаждающей жидкости.

Термостат регулирует и поддерживает температурный режим двигателя, пропуская жидкость по малому кругу при прогреве холодного двигателя, и по большому кругу, при работе двигателя на рабочих температурах (85 - 110°C).

Термостаты имеют одно- или двух клапанную конструкцию. Термосиловой элемент термостата размещается в пластмассовом или металлическом корпусе термостата и представляет собой закрытый латунный цилиндр, внутри которого находится твёрдый или жидкий наполнитель. Объём наполнителя увеличивается при нагревании. Увеличение или уменьшение объёма наполнителя приводит к перемещению (открыванию – закрыванию) клапанов термостата. На рис. 3.21 показана конструкция двухклапанного термостата.

Жидкостные системы охлаждения автомобилей относятся к типу закрытых и сообщаются с атмосферой только через паровоздушный клапан пробки расширительного бачка. В расширительный бачок жидкость поступает из радиатора вследствие расширения жидкости при нагревании. Закрытая система охлаждения способствует поддержанию в системе повышенного давления (в пределах 1,10 – 1,35 атм.), что необходимо для повышения температуры кипения охлаждающей жидкости выше 100°С.

В качестве охлаждающих жидкостей в системах охлаждения двигателей используются антифризы. Основой антифризов являются этиленгликоль или пропиленгликоль. Этиленгликоль – бесцветная сильно ядовитая жидкость с низкой температурой замерзания, маслянистая на ощупь и сладковатая на вкус. На основе этиленгликоля выпускаются антифризы с торговой маркой «Тосол». Пропиленгликоль меньше вреден для здоровья, но по рабочим характеристикам уступает этиленгликолю. В охлаждающие жидкости добавляются присадки сдерживающие коррозию металла и препятствующие образованию накипи на стенках рубашки охлаждения. Также антифризы имеют низкую температуру начала кристаллизации и обладают смазывающими свойствами. Применять в качестве охлаждающей жидкости воду не рекомендуется, так как при этом сокращается срок службы насоса системы охлаждения и двигателя в целом. Также не следует смешивать между собой антифризы разных производителей.

3.4.2. Назначение, устройство и работа системы смазки.

Система смазки несёт три основных функции: 1) обеспечивает смазку трущихся поверхностей деталей; 2) отводит тепло от деталей; 3) выносит продукты износа из пар трения. По способу подвода масла к деталям различают систему смазывания под давлением (принудительную), смазывания разбрызгиванием и комбинированную систему.

Подавляющее большинство смазочных систем автомобильных двигателей это системы комбинированного типа (рис. 3.22). В комбинированных системах наиболее нагруженные детали двигателя смазываются под давлением, а остальные разбрызгиванием. Под давлением смазываются все (за редким исключением) валы двигателя - коленчатый вал, распределительный вал, вал вспомогательных механизмов (промежуточный вал), балансирные валы, вал турбокомпрессора и др. Пульсирующей струёй через отверстие в шатуне смазываются стенки цилиндров. В некоторых конструкциях пульсирующая струя масла через специальные форсунки подаётся под головку поршня для её охлаждения. Масло, которое попадает на вращающиеся и движущиеся детали двигателя разбрызгивается этими деталями, образуя «масляный туман». В масляном тумане работают и смазываются детали двигателя, к которым масло не подаётся под давлением.

Комбинированная система смазки имеет масляный насос с маслоприёмником и встроенным редукционным клапаном , масляный фильтр, масляный радиатор и резервуар для масла, которым является масляный поддон у двигателей традиционной конструкции, или масляный бак двигателей, имеющих, так называемый «сухой картер».

Масляный насос шестерёнчатого или роторного типа приводится в движение непосредственно от коленчатого вала двигателя либо через распределительный вал или вал вспомогательных механизмов. На двигателях, имеющих сухой картер, привод масляного насоса может осуществляться от электродвигателя. Рабочие шестерни масляного насоса имеют внутреннее (рис. 3.23a) или внешнее (рис. 3.23b) зацепление. Насосы с шестернями внутреннего зацепления более компактные и размещаются в крышке коленчатого вала, а ведущая шестерня посажена на передний носок КВ. Масляный насос нагнетает масло к деталям и создаёт необходимое давление в системе смазки. Величина давления во многом зависит от частоты вращения коленчатого вала. Для двигателей различных конструкций эта величина составляет 0,4 – 0,8 кгс/см2, при оборотах КВ до 1000 об/мин. (оборотах холостого хода), и 4,0 – 5,0 кгс/см2, при оборотах КВ 5000 – 7000 об/мин. (оборотах максимальной мощности). Максимальное давление в системе регулируется посредством редукционного клапана.

Редукционный клапан встроен в корпус насоса и перепускает часть «лишнего» масла с выхода насоса на его вход. Рабочим элементом клапана является подпружиненный шарик, поршенёк или плоская металлическая шайба. Имеют распространение конструкции редукционных клапанов с направляющими поверхностями и без них. Клапаны с направляющими поверхностями, при попадании под клапан посторонних частиц, предрасположены к заклиниванию в закрытом положении. Попадание инородных частиц под клапан, который не имеет направляющей, приводит к его негерметичности. Негерметичность клапана возможна также вследствие износа седла и поверхности клапана.

Масло, поступающее к деталям двигателя от масляного насоса, очищается от механических примесей в масляном фильтре. Различают одинарные и двойные системы очистки масла (рис. 3.24).

Одинарные полнопоточные системы получили наибольшее распространение на двигателях легковых автомобилей. Масло на входе в масляную магистраль фильтруется через единственный масляный фильтр тонкой очистки. Двойная очистка масла подразумевает наличие двух фильтров: полнопоточного фильтра грубой очистки масла, включённого в систему последовательно, и фильтра тонкой очистки, подключаемого в систему параллельно. Через фильтр грубой очистки фильтруется всё масло, имеющееся в двигателе. Через фильтр тонкой очистки масло фильтруется «порционно».

Масляный фильтр тонкой очистки может иметь разборную или неразборную конструкцию (рис. 3.25).

Фильтр разборной конструкции имеет корпус, стационарно прикреплённый к двигателю и съёмный фильтрующий элемент, заменяемый при каждой смене масла.

Неразборные фильтры имеют корпус, фильтрующий элемент и несколько встроенных клапанов. Используются три основных типа клапанов: 1) противодренажный клапан – предотвращает стекание масла из фильтра обратно в картер при неработающем двигателе; 2) обратный клапан (противосливной) – исключает вытекание масла из фильтра при снятии фильтра с двигателя; 3) перепускной клапан – пропускает масло в масляную магистраль минуя фильтрующий элемент в случае повышении давления масла на входе в фильтр. Повышенное давление на входе в фильтр возможно вследствие загущения масла при низких температурах или засорения фильтрующей кулисы. Наличие или отсутствие того или иного клапана у фильтра зависит от конструкции двигателя и способа крепления к нему фильтра.

Совпадение размеров присоединительных элементов фильтров различных производителей не предполагает их автоматической взаимозаменяемости и пригодности использования на всех типах двигателей, к которым они подходят по креплению и габаритам.

Фильтры неразборной конструкции подлежат замене при каждой смене масла в соответствии с требованиями по эксплуатации автомобиля.

Помимо функции смазывания трущихся деталей система смазки несёт функцию охлаждения этих деталей. При этом само масло не должно сильно нагреваться во избежание снижения вязкости и способности удерживаться на деталях а, следовательно, и смазывающей способности. Охлаждение масла происходит в поддоне картера и частично в корпусе наружного фильтра вследствие их обдува встречным потоком воздуха при движении автомобиля и воздухом от вентилятора системы охлаждения двигателя. На части двигателей, имеющих высокую теплонагруженность, для охлаждения масла применяют масляные радиаторы.

Масляный радиатор подключается к масляной магистрали параллельно, снабжается предохранительным клапаном, отключающим радиатор от системы смазки при падении давления ниже 0,4 – 0,8 кгс/см2 и термостатом, включающим/выключающим радиатор в соответствии с заданной температурой.

Масляные радиаторы бывают с воздушным и жидкостным охлаждением. На легковых автомобилях первый тип радиаторов имеет большее применение.

Масляный радиатор с воздушным охлаждением пластинчатого или трубчатого типа, устанавливается перед радиатором системы охлаждения. Охлаждение радиатора происходит потоком воздуха создаваемого вентилятором системы охлаждения.

Эксплуатация автомобиля в целом и двигателя в частности требует от его владельца выполнения ряда требований, которые предписываются изготовителем. Производитель регламентирует: 1) марку и сорт применяемого топлива, моторного масла и других эксплутационных жидкостей; 2) предельные весовые нагрузки на кузов и шасси; 3) максимальную скорость движения автомобиля и скорость вращения коленчатого вала двигателя; 4) температуру охлаждающей жидкости; 5) давление масла; 6) давление в шинах и т.п. Изготовителем также устанавливается периодичность технического обслуживания автомобиля, его отдельных узлов и агрегатов. Перечень работ выполняемых при очередном техническом обслуживании (ТО) приводится в сервисной литературе по ремонту и обслуживанию. Следование данному перечню обязательно для ремонтного персонала автомастерской.

Следует различать следующие виды технического обслуживания автомобиля: 1) ежедневное ТО; 2) межсезонное ТО; 3) ТО №1; 4) ТО №2. К техническому обслуживанию также можно отнести и предпродажную подготовку автомобиля.

Ежедневное ТО возлагается на владельца автомобиля. Межсезонное ТО, ТО №1 и №2, как правило, проводятся на станциях технического обслуживания (СТО). Целью ТО является предупреждение появлений неисправностей узлов и агрегатов автомобиля, поддержание их в работоспособном состоянии на протяжении установленного срока эксплуатации.

Техническое обслуживание двигателя в целом сводится к ряду следующих работ и операций: 1) очистка двигателя и навесного оборудования от грязи, очистка деталей двигателя от нагара, смолистых и мазевых отложений; 2) проверка и, при необходимости, подтяжка креплений; 3) замена масла, охлаждающей жидкости, топливных, масляных и воздушных фильтров; 4) регулировочные работы.

Грязь на корпусных деталях двигателя препятствует охлаждению двигателя, попадает внутрь двигателя, создаёт помехи работе системы зажигания и других электрических систем автомобиля. Очистка двигателя и навесного оборудования от загрязнений, проводится периодически по мере необходимости.

Для очистки деталей двигателя от нагара, смолистых и мазевых отложений, а также для удаления воды из топливной системы, применяют специальные присадки, добавляемые в период эксплуатации двигателя в топливо и масло с периодичностью один раз через каждые 3 – 5 тысяч км. пробега автомобиля. Перед тем как использовать те или иные присадки для эксплутационных жидкостей необходимо свериться с инструкцией завода изготовителя.

Ослабление креплений и посадок в процессе эксплуатации узла или агрегата связано с воздействием на детали высоких температур, давлений, вибраций и знакопеременных нагрузок.

Необходимость периодической замены эксплутационных жидкостей продиктовано тем, что в процессе работы присадки, содержащиеся в моторном масле и охлаждающей жидкости, расходуются, сами жидкости загрязняются, «изнашиваются» и перестают удовлетворять предъявляемым к ним требованиям. Так как свойства масел и охлаждающих жидкостей не восстанавливаются, их заменяют. Масла заменяют с периодичностью через 8 – 10 тысяч км. пробега автомобиля, охлаждающую жидкость через 50 – 60 тысяч км. пробега или через два года, независимо от пробега. При каждой второй - третьей смене масла целесообразно проводить промывку масляной системы. При смене охлаждающей жидкости целесообразна промывка рубашки охлаждения и удаление с её стенок накипи. Промывка системы охлаждения осуществляется чистой водой с добавлением специальных веществ для удаления накипи. При смене масла меняется и фильтрующий элемент масляного фильтра. Топливные и воздушные фильтры заменяются с периодичностью, продиктованной их изготовителем, что, как правило, составляет 10 – 30 тысяч км эксплуатации.

К основным видам регулировочных работ, проводимым при ТО двигателя можно отнести: 1) натяжение ремня привода генератора и насоса охлаждающей жидкости; 2) проверка совпадения меток фаз газораспределения; 3) натяжение цепи (ремня) привода РВ; 4) регулировка тепловых зазоров в приводе клапанов; 5) регулировка начального угла опережения зажигания; 6) Регулировка топливоподачи, оборотов холостого хода и содержания вредных веществ в отработанных газах (регулировка топливной системы); 7) регулировка угла опережения впрыска топлива (для дизельных двигателей).

На двигателях, имеющих гидронатяжитель цепи (ремня), гидрокомпенсаторы клапанов и систему управления зажиганием без датчика - распределителя, регулировочные операции, обозначенные в пунктах 3) – 5), не требуются.

При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз). При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре - в верхней и нижней части. В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения. Точки в цилиндре, где поршень «останавливается» и изменяет направление своего движения, называются «мёртвыми точками». Самое дальнее положение поршня в цилиндре относительно оси коленчатого вала (верхнее положение), называют «верхней мёртвой точкой» (в.м.т.), самое ближнее положение поршня в цилиндре относительно оси коленчатого вала (нижнее положение), называют «нижней мёртвой точкой» (н.м.т.).

Чтобы установить поршень (допустим первого цилиндра) в верхнюю мёртвую точку в конце такта сжатия, необходимо повернуть коленчатый вал (например, ключом за гайку храповика) таким образом, чтобы поршень в первом цилиндре занял крайнее верхнее положение, при этом впускные и выпускные клапаны этого цилиндра должны быть закрыты.

Ремонтируя двигатель, или выполняя регулировочные работы, эту операцию ВАМ придётся проделывать множество раз.

Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом. Рабочий цикл четырёхтактного двигателя осуществляется за два оборота коленчатого вала и состоит из тактов впуска, сжатия, рабочего хода (расширения) и выпуска.

Прежде чем приступить к более подробному рассмотрению рабочего цикла следует познакомиться с некоторыми определениями и терминами, знание и понимание которых даст Вам возможность не только общаться на одном языке с представителями Вашей профессии, но и усваивать материал, изложенный в этой книге и других изданиях по профильной тематике. Часть нужных нам терминов мы уже рассмотрели в предыдущих разделах, о некоторых поговорим позже. Лучше разобраться с рассматриваемой темой поможет рис. 4.1.

Поршень, движущийся в цилиндре, проходит расстояние равное расстоянию между верхней и нижней мёртвыми точками. Это расстояние называется ходом поршня. Двигатели, у которых ход поршня меньше его диаметра, носят название короткоходных. За один ход поршня кривошип КВ проходит расстояние равное двум его радиусам, т.е. совершает полуоборот (180°).

Объем цилиндра, заключённый между крайними положениями поршня в цилиндре (между мёртвыми точками) называют рабочим объёмом цилиндра (Vр). Сумма рабочих объёмов всех цилиндров двигателя, равняется рабочему объёму двигателя, называемому также - литражом двигателя. Сумма рабочего объёма цилиндра (Vр) и объёма камеры сгорания (Vксг) равняется полному объёму (Vп).

Литраж двигателя (рабочий объём) указывается в технической характеристике автомобиля. Сравнивая рабочие характеристики двигателей различных автомобилей можно заметить, что чем больше литраж двигателя, тем выше его мощность и удельный расход топлива (при условии равенства прочих конструкционных особенностей сравниваемых двигателей).

Камерой сгорания называют объём цилиндра над поршнем, при положении поршня в верхней мёртвой точке. Топливно-воздушная смесь в цилиндре сжимается поршнем как раз до этого объёма и сгорает в этом объёме после воспламенения. Отношение объёма смеси, поступившей в цилиндр на такте впуска, к объёму смеси, сжатой до объёма камеры сгорания при такте сжатия, называют степенью сжатия двигателя. Степень сжатия показывает, во сколько раз в цилиндре сжимается смесь и определяется по формуле n = Vп/Vксг.

Степень сжатия современных бензиновых двигателей лежит в пределах 8 – 12, дизельных – в среднем 18 – 22. От степени сжатия во многом зависит топливная экономичность и мощностные характеристики двигателя. Степени сжатия двигателей ограничиваются, у бензиновых двигателей – свойством применяемого топлива (бензина), у дизельных – конструктивными особенностями применяемых материалов, из которых изготавливаются детали двигателя и которые с повышением степени сжатия «обязаны» выдерживать большие нагрузки.

Свойства бензинов описываются октановым числом бензина, характеризующим его антидетонационную стойкость.

Антидетонационная стойкость топлива тем выше, чем больше его октановое число (А –80, 93, 95, 98 и др.). Конструкция двигателя предполагает применение бензина со строго заданным октановым числом (регламентируется заводом изготовителем). Применение бензина с меньшим октановым числом приведёт к работе двигателя с детонацией и, как следствие, к преждевременному износу, или поломке двигателя. Высокооктановые бензины при сгорании выделяют больше тепла, что также следует учитывать при использовании этих бензинов на автомобилях устаревших конструкций.

Детонационное сгорание рабочей смеси (детонация) предполагает нехарактерно быстрое сгорание (взрыв) топливно-воздушной смеси в цилиндре двигателя, приводящее к повышению нагрузок, в первую очередь на детали цилиндропоршневой группы. Скорость распространения фронта пламени, сгорающего в цилиндре топлива, может возрастать с 40 м/сек. до 2000 м/сек. и более. Признаком работы двигателя с детонацией являются характерные и хорошо прослушиваемые стуки, получившие название детонационных стуков. Детонационные стуки возникают вследствие вибрации стенок цилиндра и других деталей ЦПГ под воздействием «ударной волны».

Причиной детонации может быть: 1) применение топлива с октановым числом ниже рекомендованного инструкцией производителя; 2) перегрев двигателя; 3) перегрузка двигателя по оборотам или крутящему моменту; 4) чрезмерно раннее зажигание, а также та или иная совокупность перечисленных явлений.

Работа двигателя с детонацией может сопровождаться перегревом двигателя, падением его мощности и высоким расходом топлива. Иногда появляется искристый или дымный выхлоп из глушителя. Следствием работы двигателя с детонацией могут быть поломки перемычек между кольцами на поршнях, поломки самих колец, оплавление кромки и/или прогорание днища поршня. Лавинообразное повышение температуры в цилиндре вследствие разрушения деталей из-за детонации часто приводит к появлению ещё одного весьма нежелательного явления – калильного зажигания.

Калильное зажигание- самопроизвольное и несвоевременное воспламенения смеси от сильно нагретых деталей двигателя (юбки свечи, кромки поршня, кромки клапана, тлеющего нагара и т.п.). Причина появления калильного зажигания может быть и более тривиальной, как-то несоответствие свечей зажигания данному типу двигателя или повышенное нагароотложение на днищах поршней.

На работающем двигателе, при движении поршня к нижней мёртвой точке силы, действующие на поршень, прижимают его к правой стенке цилиндра, а при движении к верхней мёртвой точке, к левой. При переходе поршня через мёртвые точки происходит изменение опоры поршня (перекладка поршня) с одной стенки цилиндра на другую.

Изменение направления действия сил в цилиндре приводит к неравномерному износу цилиндра (под овал и под конус с образованием износного уступа в верхней части цилиндра). Неравномерный износ цилиндра следует учитывать при его измерениях и последующем ремонте.

Давление, создаваемое поршнем в цилиндре в конце такта сжатия называется компрессией. Величина компрессии зависит от степени сжатия двигателя и состояния деталей цилиндропоршневой группы и клапанов. И если степень сжатия задаётся конструкцией двигателя, то состояние деталей ЦПГ и клапанов может существенно меняться в процессе эксплуатации, (детали изнашиваются, зазоры между ними увеличиваются). Измеряя компрессию в цилиндрах двигателя, мы косвенно, но достаточно уверенно можем судить о степени изношенности соответствующих деталей или об их неисправности. Диагностика двигателя методом измерения компрессии в цилиндрах широко применяется на практике.

Фазы газораспределения. Данным термином «обзывают» моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек. Этот термин станет Вам понятнее, после того как Вы изучите следующую главу.

Порядок работы цилиндров двигателя определяется порядком чередования одноимённых тактов в цилиндрах двигателя (например, тактов рабочего хода).

Например, у широко распространенных рядных четырёхцилиндровых двигателей, возможны два варианта порядка работы цилиндров: 1 – 2 – 4 – 3 или 1 – 3 – 4 – 2. Иной порядок работы может быть лишь при изменении имеющейся, и являющейся оптимальной для этого типа двигателей, конструкции коленчатого и/или распределительного валов, что не практикуется. Данный порядок цифр означает, что при работе двигателя, такты рабочего хода (равно, как и другие такты) чередуются в цилиндрах в изложенной последовательности.

Рабочий цикл четырёхтактного бензинового двигателя состоит из тактов впуска, сжатия, расширения, и выпуска (рис. 4.1).

Такт впуска. При такте впуска поршень в цилиндре перемещается от в.м.т. до н.м.т. Коленчатый вал поворачивается под действием стартера (если производится запуск двигателя) или по инерции от маховика и/или крутящего момента, создаваемого поршнями других цилиндров (если двигатель работает). Впускные клапаны при такте впуска открыты, выпускные закрыты. За счёт разрежения, создаваемого движущимся поршнем, топливно-воздушная смесь из впускного трубопровода через открытые впускные клапаны поступает в цилиндр. Разрежение в цилиндре на такте впуска может достигать 0,07 МПа.

Разряжение в 0,07 МПа является существенной величиной и определяет чувствительность двигателя к негерметичности соединений, через которые в цилиндр поступает «лишний» воздух. «Лишний» воздух обедняет рабочую смесь, что приводит к неустойчивой работе двигателя, особенно на режиме холостого хода.

Температура в цилиндре к концу такта впуска опускается до 130 – 100°С. Клапаны, стенки камеры сгорания и стенки цилиндров, поршни и другие детали ЦПГ охлаждаются новой порцией смеси, заполняющей цилиндр.

Пройдя нижнюю мёртвую точку, поршень начинает движение к верхней мёртвой точке при такте сжатия.

Такт сжатия. Поршень движется к в.м.т., но сжатие смеси начинается не тогда когда поршень начинает движение «вверх» а спустя некоторое время после этого, когда закроется впускной клапан.

Время открытия и закрытия как впускных, так и выпускных клапанов, как правило, не совпадает с моментом прихода поршня в мёртвую точку. Открытие клапанов происходит раньше этого момента, а закрытие позже, что необходимо для более полного наполнения цилиндров свежей порцией горючей смеси и для лучшей очистки цилиндров от отработавших газов. Время открытия и закрытия клапанов удобно выражать в углах поворота коленчатого вала, так как угол поворота проще измерить и проконтролировать. В этом случае говорят об углах опережения открытия и углах запаздывания закрытия клапанов относительно мёртвых точек.

При сжатии рабочей смеси в цилиндре растёт давление и температура, которые достигают максимума при приближении поршня к в.м.т. (8 –14 кгс/см2 и 400 - 500°С, соответственно). В конце такта сжатия (поршень не доходит до в.м.т. на 1 - 30° по углу поворота КВ) смесь в цилиндре воспламеняется от электрической искры и сгорает. Температура горения топливной смеси бензиновых двигателей может достигать 2800°С. Под воздействием температуры давление газов в цилиндре возрастает до 30 – 70 кгс/см2 и поршень начинает движение к н.м.т., совершая полезную работу, т.е. через шатун вращает коленчатый вал двигателя.

Воспламенение (зажигание) рабочей смеси в камере сгорания происходит раньше прихода поршня в в.м.т. Такое зажигание называется ранним зажиганием. Физический смысл необходимости «раннего» воспламенения смеси упрощённо сводится к следующему: Топливо необходимо сжечь к моменту прихода поршня в верхнюю мёртвую точку, для того чтобы максимальное давление газов начало действовать на поршень с началом его движения к н.м.т. В этом случае мощность двигателя будет наибольшей, а расход топлива оптимальным. Если смесь сгорает до прихода поршня в в.м.т., зажигание слишком раннее, если смесь горит при движении поршня к н.м.т. зажигание позднее (на самом деле процесс горения смеси продолжается некоторое время при такте рабочего хода). Как при чрезмерно раннем, так и позднем зажигании, рабочие характеристики двигателя ухудшаются. Так как с увеличением оборотов коленчатого вала двигателя поршень движется быстрее, то и зажигание должно быть более ранним. Время воспламенения топливной смеси (также как и время открытия – закрытия клапанов) выражается в углах поворота коленчатого вала относительно в.м.т. и называется углом опережения зажигания. В зависимости от оборотов КВ угол опережения зажигания современных двигателей меняется в пределах от 0 до 30 и, иногда более градусов. Угол опережения зажигания, устанавливаемый для оборотов «холостого хода», называется начальным углом опережения зажигания.

Такт расширения. Пройдя верхнюю мёртвую точку, поршень движется к н.м.т. под давлением расширяющихся газов. Процесс сгорания смеси начинается до прихода поршня в в.м.т. в конце предыдущего такта и длится 40 - 60° в углах поворота КВ. Впускные и выпускные клапаны закрыты, но за 45 - 60° до прихода поршня в н.м.т. начинает открываться выпускной клапан. С открытием выпускных клапанов давление в цилиндре быстро снижается до 5 – 3кгс/см2, температура к концу такта опускается до 1300 - 900°С. К моменту перехода поршнем нижней мёртвой точки выпускной клапан будет полностью открыт, а цилиндр «готов» к очистке от отработавших газов.

Такт выпуска. Двигающийся к верхней мёртвой точке поршень, через выпускные клапаны, вытесняет отработавшие газы в систему выпуска двигателя. Вследствие сопротивления выпускной системы и ряда других факторов, часть отработавших газов остаётся в цилиндре и участвует при последующем такте впуска в смесеобразовании, часть газов на впуске искусственно возвращается в цилиндр (рециркулируется), с целью снижения содержания в отработавших газах окислов азота. Давление в конце такта выпуска немногим больше атмосферного, температура опускается до 400 - 300°С. За 9 - 40° до прихода поршня в в.м.т. открывается впускной клапан. Выпускной клапан при этом продолжает быть открытым вплоть до начала очередного такта впуска, и некоторое время спустя, после того как поршень начнёт движение «вниз».

Угол поворота кривошипа коленчатого вала, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов. Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек, называют фазами газораспределения. Фазы газораспределения «среднестатистического» бензинового двигателя, в виде круговой диаграммы, показаны на рис. 4.2.

При дальнейшем вращении КВ, рассмотренные нами такты будут чередоваться в той же последовательности.

Как мы видим, протекание того или иного такта в цилиндре двигателя зависит от положения клапанов (открыты или закрыты) и направления движения поршня. Например, такт впуска возможен, если поршень движется вниз, впускные клапаны открыты, а выпускные закрыты. За своевременное открытие – закрытие клапанов «отвечает» распределительный вал, за направление движения поршней – коленчатый вал. Для обеспечения рабочего цикла двигателя работа кривошипно-шатунного и газораспределительного механизмов должна быть синхронизирована. «Синхронизация» обеспечивается установкой коленчатого и распределительного валов в «стартовую позицию» по специальным меткам, выбитым на шкивах валов и корпусных деталях двигателя и получившим название - «метки фаз газораспределения». Если метки фаз газораспределения, по каким либо причинам не совпадают (например, при сборке двигателя механик не обеспечил правильную установку валов) двигатель будет работать неустойчиво или попросту не заведётся. В худшем случае может произойти поломка двигателя из-за «встречи» (столкновения) клапана и поршня. Типовое расположение меток на шкивах коленчатых и распределительных валов показано на рис. 4.3.

Конструкции двигателей с искровым зажиганием (двигателей Отто) и дизельных двигателей различаются в основном устройством систем питания, типами камер сгорания и материалами, применяемыми для изготовления деталей. Рабочий цикл дизельного двигателя, как и бензинового осуществляется за четыре хода поршня и два оборота КВ, но процессы протекающие в цилиндрах не полностью идентичны. Основные отличия в работе дизельных двигателей, рассматриваются ниже.

Такт впуска. При такте впуска в цилиндры дизельного двигателя поступает атмосферный воздух, прошедший через воздухоочиститель.

Такт сжатия. При такте сжатия, движущийся вверх поршень, сжимает поступивший в цилиндр воздух до объёма камеры сгорания. Вследствие больших чем у бензиновых двигателей степеней сжатия, температура и давление в конце такта у дизелей так же больше и составляет 700 - 900°С и 40 – 50 кгс/см2 соответственно.

Степень сжатия дизельных двигателей не ограничивается свойством топлива. В цилиндре дизеля при такте сжатия сжимается воздух, который, в отличие от топливно-воздушной смеси бензинового двигателя, не склонен к детонации. Именно это и позволяет применять в дизелях вдвое большую степень сжатия, обуславливающую их высокую экономичность.

Незадолго до прихода поршня в В.М.Т. (за 5-15° по углу поворота КВ) в камеру сгорания через форсунку впрыскивается мелко распылённое дизельное топливо, которое испаряется и перемешивается с раскалённым до высокой температуры воздухом. Образовавшаяся топливно-воздушная смесь самовоспламеняется и сгорает.

Такт расширения и такт выпуска. Процессы, протекающие в цилиндрах дизельного двигателя на этих тактах, практически ни чем не отличаются от процессов, рассмотренных ранее на примере бензинового двигателя.

В многоцилиндровых двигателях рабочий цикл в каждом из его цилиндров протекает за два оборота кривошипа коленчатого вала и четыре хода поршня, т.е. абсолютно так же, как и в одноцилиндровом двигателе, на примере которого мы рассматривали четырёхтактный рабочий цикл. Последовательность чередования тактов в цилиндрах таких двигателей, называемый порядком работы двигателя, будет зависеть от конструкции распределительного и коленчатого валов. Возможный порядок работы многоцилиндровых двигателей с различной компоновкой цилиндров и конструкцией валов, приведены табл. 3.1.

Знание порядка работы цилиндров двигателя необходимо для успешного проведения ремонтных и регулировочных работ.

Умение специалиста диагностировать неисправность, не производя разборки двигателя, равно как и правильно определять её причину, базируется на всестороннем знании этим специалистом устройства двигателя, действующих на детали двигателя сил и глубокого понимания протекающих в двигателе процессов.

Силы, действующие на детали кривошипно-шатунного механизма и создаваемые ими моменты, вызывают износ деталей, который со временем приводит к нарушениям в работе двигателя, а затем, вследствие разрушения деталей, и к его поломке. От того, каким образом и насколько сильно изношены детали, будет зависеть объём выполняемых ремонтных работ, вид проводимого ремонта (капитальный или частичный), и его стоимость.

На рис. 4.4. показаны силы, действующие на детали кривошипно-шатунного механизма при такте рабочего хода. Рассмотрим некоторые из них.

Движение поршня в цилиндре двигателя при рабочем ходе осуществляется под давлением газов, действующих на днище поршня. Результирующая этого давления – сила P, приложена к центру поршневого пальца и направлена по оси цилиндра. Согласно правилу параллелограмма, сила P может быть разложена на силу F, действующую по оси шатуна и силу N, направленную перпендикулярно стенке цилиндра. На плече B сила N создаёт опрокидывающий момент, который стремится «перевернуть» двигатель в сторону, обратную вращению КВ. Опрокидывающий момент гасится опорами двигателя.

Силу F, перенесённую на ось шатунной шейки можно разложить на касательную силу Т, действующую перпендикулярно кривошипу КВ, и радиальную силу R, направленную по оси кривошипа. Произведение силы Т на плечо A, равное радиусу кривошипа, даёт крутящий момент Мк.

Крутящий момент Мк вызывает вращение коленчатого вала. Сила R создаёт давление на коренные подшипники КВ, вызывая их износ. Сила F нагружает шатунную шейку КВ и шатунные подшипники. Сила N, создаёт давление поршня на одну из стенок цилиндров, изнашивая её. После перехода поршнем н.м.т. поршень совершает перекладку на противоположную стенку цилиндра и сила N меняет своё направление.

Помимо сил, возникающих от давления газов, на детали кривошипно-шатунного механизма действуют силы инерции и центробежные силы. Эти силы также вызывают износ деталей, а их неуравновешенность приводит к сотрясению двигателя во время работы. Для уравновешивания сил, действующих в двигателе, применяются специальные конструкционные решения. Например, противовесы коленчатого вала уравновешивают центробежные силы, действующие на кривошипе, балансирные валы уравновешивают силы, поступательно движущихся деталей, а гасители крутильных колебаний предотвращают поломку коленчатого вала от воздействия на него одноимённых сил. Наибольших суммарных значений силы достигают при переходе поршня через мёртвые точки.

Давление газов при такте рабочего хода, так или иначе, действует на все детали кривошипно-шатунного механизма. Кольца (в большей степени верхние компрессионные) давлением газов прижимает к нижним поверхностям канавок поршня. В то же время, за счёт сил трения о стенки цилиндров, кольца стремятся прижаться к верхним поверхностям канавок. В результате сложения разноимённо действующих сил происходит «закручивание» верхнего компрессионного кольца, сопровождаемое его износом и износом поршневой канавки. Второе компрессионное кольцо подвержено закручиванию в меньшей степени. Маслосъёмные кольца прижимаются к верхним поверхностям канавок и при движении поршня вниз работают на съём масла со стенок цилиндров. Сказанное, поясняет рис. 4.5.

Как мы видим, детали работающего двигателя испытывают значительные нагрузки, они подвергаются воздействию высоких температур, давления, химическому воздействию горючей смеси и отработавших газов, содержащих в своём составе водяной пар, агрессивные составляющие кислот и щелочей. В процессе эксплуатации двигателя его детали изнашиваются естественным путём (естественный износ) или получают повреждения. Интенсивность естественного износа мала и предельный износ деталей наступает, как правило, к концу срока эксплуатации двигателя, установленного заводом изготовителем. Повреждение или разрушение деталей происходит из-за воздействия на детали нагрузок, превышающих допустимые пределы. Причиной появления таких нагрузок может быть детонация, калильное зажигание, перегрев или перегрузка двигателя, работа деталей двигателя с недостатком смазки, чрезмерный износ деталей и т.п.

Из-за воздействия на детали разнонаправленных сил детали изнашиваются неравномерно, и геометрические формы изношенных деталей могут существенно отличаться от первоначальных форм.

Цилиндр в плане изнашивается под овал, а по высоте под конус и «бочку» с образованием в верхней части цилиндра износного уступа (рис. 4.5.).

Верхняя часть цилиндра по высоте равная, примерно 5 -10 мм, практически не изнашивается, что и обуславливает образование износного уступа. При ремонте двигателя износный уступ может препятствовать выниманию из цилиндра поршня в сборе с шатуном. В этом случае уступ лучше срезать шабером (специальный слесарный инструмент) или сточить на станке.

На рабочей поверхности изношенного цилиндра могут наблюдаться царапины, глубокие риски и задиры. Зеркало цилиндра из-за абразивного изнашивания становится матовым или, наоборот, приобретает «чрезмерный» глянец.

Поршни деформируются из-за тепловых перегрузок, подвергаются абразивному изнашиванию, высота поршневых канавок увеличивается из-за износа их поверхностей, края канавок «заваливаются» (округляются). На юбке изношенного поршня можно наблюдать царапины, риски и наволакивание металла. Результатом работы двигателя с перегревом, детонацией, калильным зажиганием или с совокупностью этих процессов, нередко является оплавление кромки огневого пояса поршней, прогар поршней, разрушение перемычек, появление трещин и других повреждений.

У поршневых колец изнашиваются рабочие и торцевые поверхности. Износ стенок цилиндров, рабочих и торцевых поверхностей колец, верхних и нижних поверхностей канавок поршней и самих поршней приводит к прорыву рабочих и отработавших газов в полость картера. Изношенные кольца не способны эффективно удалять излишки масла со стенок цилиндров и масло сгорает вместе с горючей смесью. Расход масла «на угар» увеличивается с износом деталей ЦПГ. Попаданию излишек масла в камеру сгорания также способствует насосный эффект, проявляющийся в изношенном двигателе, и обусловленный вертикальным «колебанием» колец в канавках поршня. Изменение опоры колец с верхней плоскости канавки на нижнюю плоскость и наоборот, равно как и изменение опоры поршней с одной стенки цилиндра на другую, происходит при переходе поршней через мёртвые точки. Изношенные кольца могут приобретать обратную заточку и работать на съём масла со стенок цилиндра при движении поршней к в.м.т.

Коренные и шатунные шейки КВ изнашиваются под овал. Шейки в значительной степени подвержены абразивному изнашиванию, что приводит к появлению на их изначально глянцевой поверхности рисок, борозд и глубоких царапин, образующихся в случае внедрения в мягкий материал вкладышей инородных частиц. При работе в условиях недостатка смазки на шейках коленчатого вала могут наблюдаться задиры и наволакивание материала вкладышей, а на поверхности вкладышей «вырывы» металла. Износ шеек коленчатого вала и его вкладышей приводит к снижению давления в системе смазки. Уменьшение давления, в свою очередь, ведёт к более интенсивному износу тех же самых деталей, и так далее, по принципу «снежного кома».

Работа деталей с циклическими нагрузками (нагрузка – разгрузка), в том числе и тепловыми (нагрев – охлаждение), может приводить к появлению усталостных трещин с последующей поломкой детали в зоне максимальной концентрации напряжений (например, коленчатые валы часто ломаются в месте соединения щеки и шейки). Подобное разрушение деталей называют усталостным разрушением.

Опоры коленчатого вала и шатуны относятся к «неизнашиваемым» деталям двигателя, т.к. шейки вала контактируют не с самой опорой, а с поверхностью вкладышей. Повреждения опор возможны лишь в результате их перегрева и/или проворачивания вкладышей коленчатого вала в постелях. И то, и другое случается, в основном, по причине недостатка смазки. Проворачивание вкладышей коленчатого вала в постелях шатунов и, в особенности, в опорах блока цилиндров крайне нежелательное событие, приводящее к серьёзным повреждениям деталей и дорогостоящему ремонту с заменой этих деталей (шатунов или блока цилиндров) или с их восстановлением.

Распределительный вал в значительной степени склонен к абразивному изнашиванию. Кулачки РВ подвержены «огранке», на их поверхности и поверхности опор, а так же поверхности ответных деталей (рычагов, коромысел и др.) могут наблюдаться царапины, риски, борозды и задиры. Причиной появления глубоких задиров может быть работа деталей в условиях масляного голодания. Работа изношенного распределительного вала сопровождается характерным стуком, по тональности схожим со «стуком клапанов», но не устраняющимся после регулировки тепловых зазоров в клапанном механизме.

На износ корпусных деталей существенное влияние оказывают тепловые нагрузки. Из-за цикличного воздействия температуры (разогрев – охлаждение) деформируются привалочные плоскости головки блока цилиндров, появляются трещины между сёдлами клапанов и т.п.

Как уже было сказано выше, изнашивание деталей двигателя приводит к ухудшению его работы, что выражается в снижении мощности и крутящего момента, повышенном расходе горюче-смазочных материалов, затруднённом запуске и т.п. При соблюдении условий эксплуатации, заявляемый заводами изготовителями ресурс до капитального ремонта большинства современных двигателей малого – среднего литража составляет 200 – 300 тысяч километров пробега.

При грамотной эксплуатации этот ресурс может быть увеличен, по меньшей мере, на четверть, а при грубых нарушениях условий эксплуатации - уменьшен на три четверти. Под понятие «грамотной эксплуатации» попадают все мероприятия, в конечном счёте, позволяющие замедлить естественный износ деталей двигателя и исключить их поломку. Это комплекс мер и «затёртых» годами правил, при выполнении которых (только-то и всего) Вы совершаете маленькое чудо, существенно продлевая автомобильную жизнь.

Комплекс мер, предотвращающих преждевременный износ деталей, включает:

  • Своевременную (согласно заводской инструкции или раньше) замену масла и других эксплутационных жидкостей;

Эксплутационные свойства масел и топлива должны соответствовать конструктивным особенностям двигателя.

Подводя итог вышесказанному, можно лишь повторить известную истину о том, что «нет ничего дешевле и эффективнее профилактики», будь то профилактика зубного кариеса или неисправностей такого сложного механизма как двигатель. Повторяйте «избитые» истины чаще, а главное следуйте им, от частого повторения истина не тускнеет и смысл её не меняется.

Полную версию учебного пособия со всеми иллюстрациями смотрите здесь

Материалы: http://rtsh.ru/engin_repairs.html

3 ≫

Анализ развития энергетических установок для автомобильного транспорта показывает, что в настоящее время двигатель внутреннего сгорания (ДВС) является основным силовым агрегатом, и его дальнейшее совершенствование имеет большие перспективы.

Автомобильный поршневой двигатель внутреннего сгорания представляет собой комплекс механизмов и систем, служащих для преобразования тепловой энергии сгорающего в цилиндрах топлива в механическую работу.

Основу механической части любого поршневого двигателя составляют кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ) .

Кроме того, тепловые двигателя оснащены специальными системами, каждая из которых выполняет определенные функции по обеспечению бесперебойной работы двигателя.

К таким системам относятся:

  • система питания;
  • система зажигания (в двигателях с принудительным воспламенением рабочей смеси) ;
  • система пуска;
  • система охлаждения;
  • система смазки (смазочная система) .

Каждая из перечисленных систем состоит из отдельных механизмов, узлов и устройств, а также включает специальные коммуникации (трубопроводы или электропровода) .

Кривошипно-шатунный механизм двигателя

Кривошипно-шатунный механизм (КШМ) двигателя преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Очевидно, что передавать вращательное движение между отдельными механизмами, агрегатами и узлами автомобиля значительно проще, чем циклическое поступательное движение, которое описывает поршень, перемещаясь в цилиндре.

Кроме того, конечное звено трансмиссии автомобиля – его колеса – перемещают автомобиль посредством вращения, поэтому назначение КШМ вполне понятно.

Можно допустить, что для транспортного средства, перемещающегося по дороге с помощью, например, шагающих устройств или циклических движителей, преобразование поступательного движения во вращательное не является обязательным. Но автомобиль - колесное транспортное средство (по определению) , что обуславливает присутствие кривошипно-шатунного механизма в конструкции автомобильного двигателя.

Газораспределительный механизм двигателя

Газораспределительный механизм (ГРМ) обеспечивает поступление в цилиндры двигателя заряда рабочей смеси (в двигателях с внешним смесеобразованием) или воздуха (в двигателях с внутренним смесеобразованием) , а также для удаления (выпуска) отработавших газов и продуктов сгорания топлива.

При этом газораспределительный механизм должен обеспечивать обмен газов в цилиндрах в строго определенное время, соответственно тактам работы двигателя, и в необходимом количестве, обеспечивающем качественный состав рабочей смеси для полного сгорания топлива и получения максимального эффекта от выделяемой при этом теплоты.

Система питания двигателя

В цилиндрах автомобильного двигателя сгорает смесь воздуха (точнее – кислорода, содержащегося в воздухе) и горючего, в качестве которого чаще всего используются дизельное топливо (солярка) , газовое топливо, либо бензин. Система питания предназначена для подачи топлива и воздуха в цилиндры двигателя в нужном количестве и определенных пропорциях.

Различают два основных типа систем питания двигателей: системы с внешним смесеобразованием , в которых воздух и топливо смешиваются вне цилиндра двигателя, а также с внутренним смесеобразованием , в которых топливо и воздух подаются в цилиндры раздельно и смешиваются внутри цилиндра.

К первому типу можно отнести системы питания, оснащенные специальным смесительным устройством – карбюратором, обеспечивающим распыл топлива в воздушной струе и перемешивание компонентов смеси, которая затем поступает в цилиндры двигателя. К двигателям с внешним смесеобразованием относятся некоторые типы двигателей с впрыском бензина (инжекторные двигатели с центральным или распределенным впрыском во впускной коллектор) , а также многие типы газовых двигателей.

Ко второму типу относятся дизельные и инжекторные системы питания с непосредственным впрыском, обеспечивающие заполнение цилиндров двигателя атмосферным воздухом с последующим впрыском топлива с помощью специальных устройств непосредственно в камеру сгорания, где и происходит смешивание топлива с кислородом воздуха. При этом воспламенение смеси в дизельных двигателях осуществляется посредством сильного сжатия самовоспламенением, а в инжекторных - принудительно, от искры.

Некоторые типы газовых двигателей тоже используют внутреннее смесеобразование.

Система зажигания

Назначение этой системы – принудительное воспламенение рабочей смеси в бензиновых и газовых двигателях. Дизельные двигатели не нуждаются в системе зажигания – воспламенение рабочей смеси в них осуществляется благодаря высокой степени сжатия воздуха в цилиндрах, который в буквальном смысле становится раскаленным.

В современных двигателях чаще всего используется воспламенение смеси искровым электрическим разрядом, однако, это – не единственное возможное техническое решение – так, например, в конструкциях первых тепловых двигателей внутреннего сгорания применялись запальные трубки, воспламеняющие рабочую смесь горящим веществом.

Возможны и другие способы поджигания смеси, однако, наиболее удобной для практического применения в настоящее время считается электроискровая система зажигания.

Система пуска двигателя

Система пуска обеспечивает вращение коленчатого вала двигателя при его запуске. Это необходимо для начала функционирования механизмов и систем, обеспечивающих работу двигателя – кривошипно-шатунного и газораспределительного механизмов, систем питания и зажигания.

Для запуска современных автомобильных двигателей чаще всего применяются системы пуска с помощью привода от специального электрического двигателя – стартера. Этот способ запуска двигателя внутреннего сгорания является удобным, надежным и легко осуществимым. Однако, существуют и другие технические решения этой задачи, например, посредством пневматического мотора, работающего на запасе сжатого воздуха в ресиверах (специальных баллонах) автомобиля или полученного от небольшого компрессора с электроприводом.

Простейшая система пуска двигателя – заводная рукоятка, с помощью которой водитель (или его помощник) проворачивают коленчатый вал, обеспечивая тем самым начало работы механизмов и систем двигателя. В недалеком прошлом заводная рукоятка являлась непременной принадлежностью, которую водитель брал с собой в путь. Однако, при несомненной простоте этого «устройства», комфорта и удобства использования автомобиля такой метод пуска двигателя не добавляет, поэтому в кабине современного автомобиля заводную рукоятку (или, как ее называли в шутку водители – «кривой стартер») вы найдете вряд ли.

Кроме того, с помощью ручного пуска сложно запустить дизель – не позволяет высокая степень сжатия и вероятность травмирования водителя при запуске.

Система охлаждения двигателя

Как и следует из названия, эта система предназначена для поддержания баланса температуры работающего двигателя. Сжигание рабочей смеси в цилиндрах сопровождается сильным нагревом узлов и деталей двигателя, которые нуждаются в постоянном охлаждении, чтобы избежать перебоев в работе и поломок, обусловленных, например, температурными расширениями металла или даже прогоранием деталей и элементов конструкций.

Наиболее распространены два типа систем охлаждения, применяемые в автомобильных двигателях – жидкостная и воздушная; о принципах их действия можно догадаться по названию.

Из теплотехники известно, что для эффективного охлаждения двигателя необходим теплообменник, имеющий большую площадь поверхности для передачи тепла. В двигателях с жидкостным охлаждением в качестве такого теплообменника используется радиатор, состоящий из большого количества трубок, сквозь которые перемещается нагретая жидкость, отдавая тепло стенкам. Суммарная площадь поверхности трубок в радиаторе очень большая, а эффективность отвода тепла повышается специальным вентилятором, установленным рядом с радиатором.

В двигателях с воздушным охлаждением для этих целей применяют оребрение поверхностей наиболее нагреваемых деталей (цилиндров и их головок) , в результате чего площадь теплообмена значительно увеличивается.

Воздушные системы охлаждения на современных быстроходных двигателях применяются редко из-за низкой эффективности (по сравнению с жидкостной системой охлаждения) . Чаще всего охлаждение воздухом используют в низкооборотистых, мотоциклетных или небольших двигателях внутреннего сгорания, не предназначенных для выполнения тяжелой механической работы, а также для работы в условиях хорошего обдува (самолетные ДВС) .

Система смазки двигателя

Система смазки предназначена для уменьшения потерь механической энергии на преодоление сил трения, возникающих между сопрягаемыми подвижными деталями в кривошипно-шатунном и газораспределительном механизмах.

Кроме того, смазывание деталей способствует уменьшению их износа и частичному охлаждению.

Чаще всего в конструкции автомобильных двигателей применяется смазка деталей под давлением, когда из отдельного резервуара масло подается по трубопроводам и каналам с помощью насоса к деталям, нуждающимся в смазке.

Некоторые детали механизмов смазываются благодаря разбрызгиванию масла или посредством периодического окунания в масляную ванну.

Представленный ниже видеоролик поможет лучше понять общее устройство поршневого двигателя внутреннего сгорания.

Главная страница
Устройство автомобилей
  • Экзаменационные билеты

для группы Т-21 (IV семестр)

для группы Т-31 (V семестр)

для группы Т-31 (VI семестр)

КГБПОУ «Каменский агротехнический техникум»

Материалы: http://k-a-t.ru/PM.01_mdk.01.01/3_dvs_2/


Back to top