Что лучше прямой или распределенный впрыск?

1 ≫

впрыск На вопрос о том, что делается при воздействии на педаль акселератора, можно услышать от большинства автовладельцев банальный ответ, который правильным можно назвать лишь наполовину: происходит увеличение либо уменьшение подачи топливной смеси в силовой агрегат.

На самом деле, при помощи газовой педали осуществляется управление воздухоподачей внутрь цилиндров. А в зависимости от температуры мотора и его реальной производительности, будет подано и необходимое количество топлива для приготовления оптимального состава горючей смеси.

Например, у давно устаревших двигателей с карбюратором дозировка бензина осуществлялась по принципу разрежения воздуха, находящегося за заслонкой дросселя, управление которой осуществлялось педалью «газ». Сразу стоит сказать, что дозировка бензина в таком типе силового агрегата не отличалась точностью, вследствие чего карбюраторный мотор нельзя было назвать экономичным и экологически безопасным. В итоге это и послужило толчком к полному списанию карбюраторных моторов с производства.

Карбюраторные системы впрыска топлива с успехом заменили системы форсунок, подача и впрыск топливной смеси в которых осуществляется под давлением, его обеспечивает бензонасос.

Выделяют три основных типа систем впрыска:

Однако сегодня на автомобилях применяются только последние две. Если говорить о центральной системе распределения впрыска (моновпрыске), то ее работа оказалась неэффективной, поскольку топливная смесь неравномерно распределялась по цилиндрам, а на впуске возникало значительное сопротивление, в результате чего не удалось достичь требуемого уровня экономичности. По этой причине и в связи с ужесточением норм экологической безопасности, моноврпрыск, как и карбюратор, также канул в Лету.

Относительно распределительной (многоточечной) системы впрыска MPI -Multi Point Injection можно сказать, что в ее работе также далеко не все в порядке. Однако, ее «конкуренту» – системе прямой подачи топлива, которую с конца ХХ века стал использовать на всем своем модельном ряде концерн Mitsubishi, более чем за 15 лет так и не получилось отправить MPI в отставку. Теме не менее, по прогнозам специалистов, это когда-нибудь да случится, и систему распределительного впрыска, как карбюратор и центральный впрыск отправят на «свалку автомобильной истории».

Действительно ли использование системы прямой топливоподачи настолько эффективно и оправдано, что скорое вытеснение с рынка MPI неизбежно? Дабы правильно ответить на этот вопрос, стоит провести сравнение этих систем топливоподачи.

В отличие от центрального типа топливовпрыска в этих обеих системах бензин впрыскивается через форсунку в цилиндр силового агрегата, но в распределенной системе предусмотрен впускной коллектор, через который вначале проходит топливо.

Во время прямой подачи топлива его впрыск осуществляется непосредственно в цилиндр, а точнее, в его камеру сгорания. Пожалуй, это и является главным отличием двигателей, которые у разных производителей имеют свои буквенные обозначения: CGI (Mercedes), FSI (Volkswagen), GDI (Mitsubishi), HPi (Peugeot) от модельного ряда моторов MPI.

Интересно, а чем же так хорош прямой впрыск топлива в цилиндр? Реально – ничем, если учитывать конструкционные особенности моторов. А все потому что в этом случае на создание горючей смеси и испарение паров бензина выделено слишком мало времени, чем при его прохождении через впускной коллектор, когда на выходе в цилиндр поступает уже полностью готовая смесь.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

Дизели Фольксваген: в поисках перпетуум мобиле

Изобретенный в конце позапрошлого столетия талантливым немецким инженером Рудольфом Дизелем, двигатель еще совсем недавно считался уделом большегрузных фур, судов и прочих мощных транспортных средств. Однако время неумолимо движется вперед. Сегодня на европейских и российских дорогах насчитываются

Карбюратор или инжектор – что выбирает современный автомобиль?

Автомобильный двигатель традиционной конструкции имеет одну важную деталь – карбюратор. Именно благодаря системе карбюрации, где смешивается топливо и воздух, формируется оптимальный состав горючей смеси, подаваемой в область цилиндров мотора. Карбюраторы нашли широкое применение в различных

Первый четырехклапанный в серии – Mercedes-Benz M111

На смену технически устаревшему M102 в 1992 году немцы приступили к выпуску совершенно нового бензинового мотора M111. Большое внимание было уделено системам впрыска топлива и зажигания, теперь они имели электронное управление. По сравнению с предшественником двигатель стал более компактным, но

Как определить и устранить факторы увеличенного потребления топливной смеси

Автомобилист регулярно анализирует поведение автомобиля на дороге, при этом центральное место часто занимает именно количество потребляемого топлива.

Жидкости для очистки инжекторных форсунок

Уже мало кто спорит по поводу преимуществ моторов, оснащенных системой впрыска топлива. После их появления участь карбюраторов была предрешена.

Как промыть инжектор и при этом не угробить автомобиль

Качество российского топлива нельзя назвать высоким. В бензине, соответствующем ГОСТ, содержание тяжёлых нефтяных фракций не должно превышать установленных норм. Но по-настоящему качественное топливо на отечественных АЗС — большая редкость.

Материалы: http://mashinapro.ru/1418-vprysk-topliva-pryamoy-vs-raspredelennyy.html

2 ≫

ВПРЫСК НЕПОСРЕДСТВЕННЫЙ, НО РАЗНЫЙ

Нет плохих идей, есть не доведенные до ума или нереализованные — так, наверное, считают японские инженеры. По крайней мере, вряд ли кто-то еще сравнится с ними по числу оригинальных решений, применяемых на серийных автомобилях. «А это мы придумали, мы же над этим работали!» — кричат потом в Европе и Америке. Придумали. Но не сделали. Или сочли невыгодным и бросили. А теперь догоняйте! И они бросились в погоню.

Пионером в применении непосредственного впрыска топлива стала компания Mitsubishi, разработавшая систему питания GDI. Сегодня аналогичную технологию используют Mercedes (CGI), BMW (HPI), концерн Volkswagen (FSI, TFSI, TSI – VW, Audi, Skoda, Seat) и Toyota (JIS).

Но обо всем по порядку. Уже более 100 лет на автомобили устанавливается бензиновый ДВС и уже почти 100 — двигатель Дизеля. Мы давно к ним приспособились и, хорошо зная их достоинства и недостатки, применяем тот или другой по обстоятельствам. Бензиновый двигатель легко пускается, разгоняется быстро и до высоких оборотов, имеет большую литровую мощность и дешевле стоит. Но любит «покушать», причем недешево. Поэтому его мы чаще видим на легковых и небольших грузовых автомобилях.

Немного теории: чтобы топливо сгорело, нужен воздух. Но надо смешать с топливом столько воздуха, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим, и оно, конечно же, давно известно. Например, для бензина оптимальный (теоретически) состав топливной смеси выражается соотношением 14,7:1, то есть на 1 грамм бензина нужно 14,7 грамма воздуха. Смесь, в которой воздуха больше, чем нужно, называется бедной, а та, в которой воздуха меньше, чем нужно (то есть больше топлива), называется богатой. Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает в трубу» и растет выброс угарного газа.

FSI Turbo – первый серийный двигатель, в котором сочетаются непосредственный впрыск бензина и турбонаддув

НА НЕКАЛОРИЙНОЙ ПИЩЕ

Итак, проблема в том, что искра упорно не желает воспламенять бензовоздушную смесь более бедную, чем в соотношении 17:1. Но ведь можно заполнять цилиндр совсем бедной смесью, а непосредственно к свече подавать более богатую, которая загорится. Пытались: например, в форкамерном двигателе эта идея и была заложена. Реальных же результатов удалось достичь на моторах с распределенным впрыском топлива: здесь добиваются устойчивой работы на смеси с соотношением 22:1, но сильнее обеднить смесь все равно не удается. Ведь в случае обычного распределенного впрыска смесеобразование ВНЕШНЕЕ — форсунка впрыскивает бензин во впускной трубопровод. И доставить более богатую часть потока смеси к свече мы можем только за счет направления потока методами аэродинамики, например, определенным образом его завихряя. Вот если бы топливо впрыскивалось непосредственно в цилиндр.

КАК РАБОТАЕТ GDI

Главный принцип работы данной системы питания – подача бензина не во впускной тракт, а непосредственно в камеру сгорания и формирование послойного и однородного смесеобразования в различных режимах работы мотора. Но подобные топливные системы имеют и различия, причем иногда довольно существенные. Основные из них – рабочее давление в топливной системе, расположение форсунок и их конструкция.

В двигателе FSI от Volkswagen форсунка расположена под большим углом к оси цилиндра. Струя топлива направлена в отраженный от поршня поток воздуха

Действительно, двигатель GDI напоминает по конструкции и обычный бензиновый, и дизель. В каждом цилиндре присутствует и свеча зажигания, и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа (50 атм.). Форсунка обеспечивает два различных режима впрыскивания топлива. Обратим внимание на следующие особенности. Впускной трубопровод подходит к цилиндру сверху. Это позволяет получить падающий поток воздуха, который после контакта с поршнем разворачивается и устремляется вверх, закручиваясь по часовой стрелке (такая организация воздушного потока позволяет достичь оптимальной концентрации топлива непосредственно около свечи). По почти прямому трубопроводу поток движется с очень высокой скоростью, и даже когда поршень достиг нижней мертвой точки, еще некоторое количества воздуха входит в цилиндр по инерции.

Поршень необычный — сверху есть выемка сферической формы. Форма поршня обеспечивает три важные функции. Во-первых, позволяет задать воздушному потоку нужное направление движения. Во-вторых, направляет впрыскиваемое топливо непосредственно к свече зажигания, что важно при работе на предельно бедных смесях. В-третьих, определяет распространение фронта пламени.

В двигателях GDI (Gasoline Direct Injection – непосредственный впрыск бензина, Mitsubishi), появившихся осенью 1997 года, используются два или три режима смесеобразования. Для японского рынка реализована двухрежимная технология, а для Европы – трехрежимная.

При частичной нагрузке (скорость до 120 км/ч) двигатель работает на сверхобедненной горючей смеси с послойным смесеобразованием. Топливо подается в камеру сгорания (под давлением 50 бар) в конце такта сжатия, соотношение «воздух–бензин» в среднем по объему камеры может достигать пропорции 40:1. Поджигается такая смесь за счет создания в зоне искрового разряда «облака» с нормальным составом смеси (14,5:1). Формирование облака происходит благодаря завихрению струи топлива, которое уже успело смешаться с воздухом с помощью специальной выемки в днище поршня. У стенок камеры сгорания при этом остается почти чистый воздух. Когда от двигателя требуется больший крутящий момент (высокая скорость, движение на подъем), электроника активирует другой способ смесеобразования – бензин впрыскивается на такте впуска, как в обычных инжекторных двигателях. При необходимости получить максимальную мощность (интенсивный разгон) «работает» третий способ смесеобразования – топливо подается в два этапа: первый – при такте впуска, второй – при такте сжатия. Первая порция топлива дает возможность получить в цилиндре равномерно распределенную сверхобедненную (до 60:1) горючую смесь, а вторая обеспечивает получение нормальной смеси в районе искрового разряда. После воспламенения нормальной смеси фронт пламени распространяется по цилиндру и поджигает сверхобедненную смесь. Японский вариант отличается отсутствием третьего режима.

Сравнение характеристик 2,0-литровых двигателей с распределенным и непосредственным впрыском показывает, что GDI мощнее на 10 л .с. (145 против 135 л .с.) и на 13% экономичнее в городском цикле (10,2 л/100 км против 11,7).

Двигатель CGI Mercedes-Benz: вертикально расположенные пьезоэлектрические форсунки обеспечивают очень точное дозирование подачи бензина

Система непосредственного впрыска Volkswagen под названием FSI (Fuel Stratified Injection – многослойный впрыск топлива) была представлена в 2000 году. Как и в GDI для японского рынка, FSI может работать в двух режимах – экономичном (при малых и средних нагрузках) и обычном (большие нагрузки). В экономичном (равномерное движение на скоростях до 120 км/ч ) впрыск топлива происходит при такте сжатия, а в обычном режиме – при такте впуска, как и в системе питания с распределенным впрыском.

Повышенное давление впрыска (100 бар) обеспечивает более своевременную подачу топлива и качественное его распыление. Увеличен наклон форсунки, а впускной канал разделен специальной перегородкой на две части. Воздух может поступать либо через одну часть его сечения, либо через обе. На малых оборотах поток воздуха проходит через одну половинку канала, что позволяет увеличить его скорость для получения лучшего завихрения потока. На больших оборотах перегородка открывается, воздух поступает через весь канал, и скорость потока остается примерно такой же, как и на малых оборотах.

Если сравнить двигатели Volkswagen рабочим объемом 1,4 л с распределенным и непосредственным впрыском, устанавливаемые на модели Polo, нетрудно заметить, что FSI на 11 л .с. мощнее ( 86 л .с. против 75 л .с.) и обеспечивает меньший расход горючего (4,7–7,7 л против 5,8–10,2 л/100 км).

Очень долго бензиновые двигатели с непосредственным впрыском были только атмосферными. И только в 2004 году конструкторы Volkswagen AG создали на основе мотора FSI двигатель с турбонаддувом и непосредственным впрыском бензина (T-FSI или FSI-Turbo), который устанавливался на «заряженных» версиях (VW Golf GTi, Audi A3). Следующей разработкой стал TSI (непосредственный впрыск и двойной турбонаддув). Правда, называть его «двойным турбонаддувом» не совсем корректно, так как на малых оборотах (до 2400 об/мин) воздух подается только механическим компрессором, а на больших – лишь турбокомпрессором, который приводится в действие отработавшими газами. Благодаря такой схеме эффективное давление наддува достигается уже при 1500 об/мин и сохраняется во всем диапазоне оборотов.

В двигателях TSI впервые использовали форсунки для впрыска топлива с шестью отверстиями вместо привычного одного и увеличили давление впрыска до 150 бар, что позволило существенно улучшить качество смесеобразования.

Показатели турбированных моторов еще больше впечатляют. Например, 1,4-литровый агрегат с турбонагнетателем и компрессором развивает мощность 170 л .с. и крутящий момент 240 Нм в диапазоне от 1750 до 4500 об/мин, при этом расход топлива у модели Golf GT составляет 5,9–9,6 л/100 км.

В двигателях Mercedes CGI (Stratified-Charged Gasoline Injection – послойный впрыск бензина), представленных в 2002 году, используются пьезоэлектрические форсунки, позволяющие реализовать многослойное смесеобразование за счет подачи топлива несколькими порциями. В открытой форсунке между иглой и корпусом образуется кольцевая щель толщиной в несколько микрон, что позволяет получить чрезвычайно тонкое распыление топлива. Форсунка размещена в центре камеры сгорания, а свеча зажигания расположена между выпускными клапанами, причем ее положение выбрано с учетом формы конуса распыленного горючего. Давление в топливной системе – 200 бар, что дополнительно улучшает качество распыления. Применяется собственная система охлаждения для топлива и электронного блока управления системой впрыска. Работа на переобедненных смесях (примерно 35–40:1) допустима и на скоростях около 120 км/ч , в то же время благодаря точному смесеобразованию сохраняется крутящий момент, достаточный для разгона модели CLS от 60 до 120 км/ч на третьей передаче всего за 6,2 с. Новый двигатель 350 CGI развивает 292 л .с. при 6400 об/мин (у мотора с распределенным впрыском – 272 л .с. при 6000 об/мин) и обеспечивает средний расход топлива 9,1–9,3 л/100 км вместо 10,1 л . Другими словами, при более высокой мощности двигателя расходуется примерно на 10% меньше бензина.

Пьезоэлектрическая форсунка расположена почти вертикально, а свеча зажигания находится практически на границе конуса распыла бензина

Система непосредственного впрыска бензина у BMW HPI (High Precision Injection – высокоточный впрыск) была представлена в 2006 году. Сочетание систем регулирования фаз газораспределения Double-VANOS, высоты подъема клапанов VALVETRONIC и пьезоэлектрических форсунок с давлением впрыска 200 бар, расположенных в непосредственной близости от свечей зажигания, позволило организовать послойное смесеобразование на всех режимах работы двигателя. Форма топливной струи в сочетании со специальной геометрией днища поршня обеспечивает образование нормальной смеси именно в районе искрового разрядника свечи зажигания. Применение двух турбонагнетателей по одному на каждые три цилиндра позволяет практически устранить эффект «турбоямы» и обеспечить быстрый отклик на нажатие педали газа. Новый трехлитровый двигатель развивает 272 л .с. и 315 Нм (у рядной трехлитровой «шестерки» с распределенным впрыском – 258 л .с. и 300 Нм), при этом расход топлива меньше на 10%.

При всех имеющихся отличиях двигатели с непосредственным впрыском используют принцип послойного сгорания топливовоздушной смеси и могут работать при более высокой степени сжатия (от 10,5 до 12,5) на бензине с октановым числом 95. В таких моторах у стенок камеры сгорания находится почти чистый воздух, а испарение топлива, происходящее с поглощением тепла непосредственно в цилиндре, приводит к дополнительному охлаждению цилиндров. Все это способствует снижению вероятности детонационного сгорания топлива. Наилучшие результаты дает комплексное использование непосредственного впрыска и других технологий, оптимизирующих рабочий процесс ДВС (регулировка фаз газораспределения, высоты подъема клапанов и т. п.). Подобные топливные системы дают дополнительную экономию горючего и уменьшение выбросов в атмосферу. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.

АИ 95 -1,19 руб. АИ 92 -1,11 руб. ДТ Евро-1,23 руб.

Материалы: http://www.autogazeta.by/autogazeta/tehburo/834

3 ≫

Первое приспособление, напоминающее современную систему распределенного впрыска топлива, придумал для своих двигателей английский инженер и изобретатель Герберт Стюарт еще в конце XIX века.

Первую российскую систему впрыска для бензиновых авиационных двигателей разработали в 1916 году конструкторы Микулин и Стечкин

В дальнейшем его идеи развили и усовершенствовали Роберт Бош и Клесси Камминс, и конструкция к уже в двадцатые годы нашла массовое применение в топливной системе дизельных двигателей. Первую российскую систему впрыска для бензиновых авиационных двигателей разработали в 1916 году конструкторы Микулин и Стечкин.

Впервые система распределенного впрыска бензина была применена на двигателе, изобретенном шведским инженером Йонасом Хессельманом в 1925 году. Согласно замыслу Хессельмана, топливо необходимо было впрыскивать в каждый цилиндр ближе к концу такта сжатия, чтобы воспламенение происходило уже непосредственно перед началом хода поршня вниз. Двигатель Хессельмана обычно запускался на бензине, а затем при работе использовался дизель или керосин.

Прямой впрыск топлива в каждый цилиндр использовался в авиационных двигателях времен Второй мировой производства Junkers, Daimler-Benz и BMW с целью обеспечить пилотам возможность выполнять фигуры высшего пилотажа без риска остановки мотора. На германских авиационных двигателях использовалась адаптированная система впрыска дизельного топлива фирмы Bosch. Устройства назывались карбюраторами, но топливо подавалось не самотеком, а при помощи насосов высокого давления.

Первые серийные системы управления распределенным впрыском были механическими, их производство в 1951 начала компания Bosch

Первую систему распределенного впрыска, управляемую электроникой, производства итальянской фирмы Caproni-Fuscaldo установила на гоночный автомобиль Alfa Romeo 6C2500 в 1940 году. Шестицилиндровый двигатель был снабжен индивидуальными форсунками.

Первые серийные системы управления распределенным впрыском были механическими. Их производство в 1951 начала компания Bosch. Одним из первых такой системой в 1954 оснастили легендарное купе Mercedes-Benz 300 SL «Крыло чайки». В дальнейшем механические системы начали устанавливать и на более массовые модели, к примеру, на автомобили Audi 100.

Топливная рейка с форсунками и регулятором давления.

Эпоха электронного управления системами впрыска бензина началась в восьмидесятые годы с появлением дешевых микропроцессоров. Первым серийным автомобилем с инжектором, управляемым электронным контроллером на основе микропроцессора, был Rambler Rebel 1957 года фирмы Nash - части американского автомобильного концерна AMC. Система впрыска называлась Electrojector, и ее применение позволило поднять мощность восьмицилиндрового двигателя "Бунтаря" на 60 л.с.

В системе распределенного впрыска топливо в каждый цилиндр впрыскивается отдельной форсункой. Существует несколько разновидностей распределённого впрыска. Различаются они по времени открытия форсунок. К примеру, в случае одновременного впрыска все форсунки открываются разом. Если форсунки открываются попарно, впрыск называется попарно-параллельным.

Связующим звеном между современной системой распределенного впрыска и карбюратором был моновпрыск - система, с управляемой компьютером единственной форсункой

Большинство современных автомобилей оснащено системами фазированного впрыска. В этой системе каждая форсунка управляется индивидуально и открывается в наиболее удачный с точки зрения заложенной в блоке управления программы момент, то есть непосредственно перед началом такта впрыска.

Как правило, в топливной системе фазированного впрыска в управляющей программе предусмотрены два дополнительных режима: прогрева и аварийный режим. В случае их задействования фазированный впрыск заменяется попарно-параллельным. Это позволяет двигателю в период прогрева работать в интенсивном режиме и на относительно высоких оборотах. В аварийном режим, в случае неисправности одного из датчиков, показания которого влияют на количество впрыскиваемого топлива, обеспечивается бесперебойная работа двигателя при разной нагрузке. Как правило, поводом для включения аварийного режима становится неисправность основного датчика, показаниями которого руководствуется блок управления при дозировке топлива, - датчика фазы или, иначе, датчика положения распределительного вала.

Последний тип распределенного впрыска - прямой впрыск, представляющий собой разновидность фазированного. В этой системе топливо впрыскивается не во впускной коллектор, а непосредственно в камеру сгорания каждого цилиндра.

Управление системой впрыска современного автомобиля осуществляет компьютер, в автомобильной терминологии носящий название электронного блока управления двигателем.

Для вычисления оптимального момента для открытия топливных форсунок и времени, в течение которого они должны оставаться открытыми, блок управления использует показания различных датчиков.

Масса воздуха, поступающего в двигатель, измеряется датчиком массового расхода воздуха. Это один из важнейших показателей. Кроме него, при определении количества топлива компьютер опирается на данные по температуре двигателя, температуре всасываемого воздуха, скорости вращения коленчатого вала, угла открытия дроссельной заслонки и динамике ее открытия. Рассчитав количество топлива, которое может полностью сгореть при данной массе воздуха в цилиндрах, компьютер подает сигнал форсункам на открытие. Сигналом служит электрический импульс нужной длительности. Во время подачи сигнала форсунки остаются в открытом положении, и топливо, которое в магистрали находится под давлением, впрыскивается во впускной коллектор.

Первое и основное преимущество распределенного впрыска топлива – экономичность. Кроме того, в связи с более полным сгоранием топлива за один цикл автомобили с распределенным впрыском наносят меньше вреда окружающей среде вредными выбросами. При точной дозировке топлива вероятность возникновения неожиданных сбоев в работе при экстремальных режимах (преодоление крутого подъема, например) сведена практически к нулю.

Применение распределенного впрыска продлило жизнь многим популярным автомобилям, которые были бы сняты с производства в связи с низкой топливной экономичностью

Недостаток систем распределенного впрыска в достаточно сложной и всецело зависящей от электроники конструкции. В связи с большим количеством электронных компонентов диагностика и ремонт систем распределенного впрыска возможны только в условиях профессионального сервисного центра.

Материалы: http://blamper.ru/auto/wiki/dvigatel/raspredelennyy-vprysk-topliva-3712


Back to top