Как функционирует многоточечный впрыск топлива?

1 ≫

  • Система распределенного впрыска топлива
  • 1. Принцип работы многоточечного впрыска
  • 2. Проверка многоточечного впрыска
  • 3. Регулировка многоточечного впрыска

Система впрыска топлива является составляющей частью топливной системы транспортного средства, а роль ее основного рабочего органа играет форсунка. На сегодняшний день, на разных автомобилях можно встретить различные виды подобных устройств, но все они выполняют одну общую задачу – обеспечивают впрыск топлива. Так, системы впрыска присутствуют как на бензиновых, так и на дизельных моторах, но их устройство и принцип работы существенно отличаются друг от друга. В данной статье хотелось бы уделить внимание одной из разновидностей таких систем – многоточечному (распределенному) впрыску, который устанавливается на бензиновых двигателях.

1. Принцип работы многоточечного впрыска

Вся деятельность системы распределенного впрыска базируется на подаче топлива в цилиндры отдельной форсункой, то есть у каждого цилиндра она своя. Исходя из принципа работы, все такие системы принято разделять на две группы – систему непрерывного впрыска и систему импульсной подачи топлива, контроль за работой которых осуществляется механическим или электронным путем. Надо отметить, что способ управления – это еще один классификационный критерий.

Наиболее известными конструкциями такого рода являются системы K-Jetronic (механическая система непрерывной подачи топлива), L-Jetronic (система импульсного впрыска, имеющая электронное управление) и KE-Jetronic (механическая система непрерывной подачи топлива, снабженная электронным управлением), а основным их производителем выступает известная фирма Bosch.

Согласно еще одной классификации, система распределенного впрыска топлива может быть:

- одновременной (на практике встречается нечасто) – за один оборот коленвала все форсунки срабатывают одновременно;

- попарно-параллельной – за один оборот коленвала, форсунки срабатывают парами (один раз за оборот);

- фазированной или последовательной, когда за один оборот коленвала каждая форсунка регулируется отдельно, и ее открытие происходит один раз – непосредственно перед тактом впуска.

В наше время фазированный впрыск является самым распространенным вариантом многоточечной системы, так как используется практически всеми автопроизводителями. Благодаря тому, что каждая форсунка управляется в индивидуальном порядке, ее открытие происходит в наиболее удачный момент, то есть непосредственно перед началом такта впрыска. Время этого момента заранее заложено программой блока управления. Обычно в ней предусмотрены два дополнительных режима: режим прогрева и аварийный, при активации которых последовательный впрыск меняется на попарно-параллельный. В ходе прогрева двигателя такая особенность позволяет мотору работать в интенсивном режиме и на сравнительно высоких оборотах.

В аварийном режиме, когда один из датчиков, отвечающих за количество впрыскиваемого топлива, ломается, силовой агрегат может продолжать работать в условиях разных нагрузок. Зачастую, причиной активации аварийного режима является поломка основного датчика, показания которого учитываются блоком управления в ходе определения необходимой дозы топливной жидкости (имеется ввиду датчик положения распредвала или, как его еще называют, – датчик фаз).

Контроль и управление системой впрыска на выпускаемых сегодня транспортных средствах осуществляется с помощью специального компьютера, именуемого электронным блоком управления, а чтобы вычислить оптимальный момент для открытия форсунок и длительность такого состояния, ему необходима информация от различных датчиков.

Один из важнейших показателей – объем поступающих в двигатель воздушных потоков, измеряющихся датчиком массового расхода воздуха. Также, в ходе вычисления количества требуемого топлива, компьютер опирается и на другую информацию: например, на температурные характеристики двигателя и всасываемых потоков воздуха, скорость вращения коленвала, угол открытия дросселя и динамику этого процесса.

Определив нужное количество топливной жидкости, то есть то, которое при имеющейся массе воздуха сможет полностью сгореть, компьютер посылает форсункам соответствующий сигнал (длительный электронный импульс), приняв который, они открываются. В процессе подачи сигнала форсунки остаются открытыми, и топливо под большим давлением впрыскивается в коллектор.

2. Проверка многоточечного впрыска

Если какой-то компонент системы распределенного впрыска топлива выходит из строя (неважно, форсунки это, датчик или РСМ), подача в цилиндры соответствующего количества топливной жидкости нарушается, вследствие чего может возникнуть несколько характерных проблем:

- во-первых, двигатель либо вообще не будет запускаться, либо будет запускаться с определенными трудностями;

- во-вторых, работа мотора на холостых оборотах, да и при всех остальных режимах, не сможет характеризироваться особой устойчивостью.

Конечно, указанные причины могут свидетельствовать о многих проблемах, но если проведение основной диагностики (включая проверку системы зажигания, регулировку двигателя и прочих узлов) не принесло желаемых результатов, то обследование элементов системы многоточечного впрыска – это следующий шаг на пути к определению причины названных неполадок.

Обратите внимание! Прежде чем переходить к диагностике любого узла топливной системы, необходимо снять в ней давление. Стандартный метод выполнения указанной задачи предусматривает всего два действия: снятие с аккумулятора «массы» и ослабление соединительной гайки в топливной магистрали. Правда, есть еще один альтернативный способ достижения цели. Его суть заключается в удалении реле топливного насоса или его предохранителя, после чего нужно запустить мотор в режиме холостого хода и дать ему поработать до остановки. После прекращения работы снятые детали (предохранитель или реле) возвращаются на прежние места.

Порядок выполнения проверки системы многоточечного впрыска следующий:

1. В первую очередь необходимо проверить, надежно ли подключены провода и подтвердить (или опровергнуть) наличие коррозии;

2. Дальше выполняется диагностика состояния воздушного фильтра и свечей зажигания;

3. Давление компрессии в цилиндрах тоже может повлиять на неполадки в работе распределенного впрыска, поэтому стоит уделить внимание и ей;

4. В завершение проверки полезно будет обратить внимание на то, правильно ли установлен угол опережения зажигания.

3. Регулировка многоточечного впрыска

Регулировка многоточечного впрыска на разных топливных системах может иметь свои особенности, поэтому сейчас будет описан процесс настройки на нескольких наиболее известных ее вариантах.

Перед выполнением регулировки на этих системах, необходимо установить скорость холостого хода и выполнить несколько требований. Во-первых, состояние системы зажигания должно быть удовлетворительным, что включает правильную регулировку и замену изношенных деталей. Также, в точной настройке нуждается дроссель и его выключатель. Во-вторых, следует очистить воздушный фильтр, прогреть двигатель и настроить вентилятор таким образом, чтобы он включился и выключился один раз.

Сам процесс регулировки многоточечного впрыска начинается с настройки скорости холостого хода с помощью винта поворота дросселя: поворот по часовой стрелке будет уменьшать скорость, а поворот в обратную сторону – увеличивать ее. После выполнения указанных действий, в соответствии с инструкцией производителя на автомобиль устанавливают анализатор выхлопных газов, а затем, путем вращения винта-измерителя воздушного потока выполняется регулировка состава топливной смеси (чтобы получить доступ к винту, с него следует снять заглушку).

В этой системе скорость холостого хода не регулируется, а управляется клапаном регулятора скорости холостого хода. В этом случае для настройки работы многоточечного впрыска необходимо установить уже упомянутый анализатор выхлопных газов и отрегулировать состав топливной смеси (СО) посредством вращения винта-измерителя воздуха. Поворот винта по часовой стрелке увеличивает содержание СО, а поворот против нее – уменьшает.

Здесь регулировка скорости холостого хода выполняется так же, как и в системе Bosch L3.1, описанной выше. Состав топливной смеси регулируется устройством автоматически в соответствии с сигналами датчика кислорода.

Если на вашем автомобиле установлен этот вариант системы многоточечного впрыска, то знайте, что скорость холостого хода можно отрегулировать только на 8-клапанных двигателях, а на 16-клапанных этот показатель настраивается ЭБУ.

Порядок выполнения регулировочных работ такой же, как и в предыдущих вариантах:

- настройка скорости холостого хода с помощью винта поворота дросселя: поворот по часовой стрелке – уменьшение скорости, против нее – увеличение;

- установка анализатора выхлопных газов;

- регулировка состава топливной смеси посредством винта - измерителя воздушного потока (для получения к нему доступа нужно предварительно снять заглушку).

5. MM8P, SAGEM-LUCAS 4GJ, BOSCH MOTRONIC 5.1, BOSCH MOTRONIC 3.2

Если на вашем автомобиле установлена одна из этих систем, то выполнить регулировку не получится, ведь она здесь попросту не предусмотрена, а при несоответствии показателей норме, это может означать только одно – поврежден сам блок управления.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Вам также может быть интересно

Электромобиль Samsung SM3 удивляет всех своими новыми характеристиками

Цена нового электрического грузовика Tesla Semi оказалась неожиданно низкой

Hyundai и Michelin создают специальные шины для электромобилей

В Украине определили лучших экспертов по автомобильным тормозным системам

  • © 2017 Auto.Today
  • Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • Конфиденциальность
  • Реклама на сайте
  • Редакция
Использование любых материалов, размещенных на сайте, разрешается при условии ссылки на auto.today

Редакция портала может не разделять мнение автора и не несет ответственности за авторские материалы, за достоверность и содержание рекламы

Материалы: http://auto.today/bok/3537-sistema-mnogotochechnogo-raspredelennogo-vpryska-topliva.html

2 ≫

Общее описание системы электронного впрыска топлива бензиновых двигателей.

Электронный блок управления (ЭБУ) выполнен в виде микропроцессорного контроллера, осуществляющего функции управления режимами работы двигателя в зависимости от показаний электронных датчиков автомобиля. На основании полученной информации ЭБУ вырабатывает сигналы управления форсунками и другими исполнительными устройствами. Электронные компоненты блока смонтированы на печатной плате и помещены в металлический корпус, расположенный в автомобиле в месте, мало подверженном воздействию влаги и пыли. Использование микросхем средней степени интеграции и микропроцессоров позволяет значительно увеличить надежность системы, хотя и предъявляет повышенные требования к квалификации обслуживающего персонала. На значительной части автомобилей имеется диагностический разъем, с помощью которого можно считать некоторые параметры работы системы впрыска топлива и коды самодиагностики.

Электронные датчики информируют ЭБУ о следующих параметрах.

  • положение замка зажигания;
  • положение распредвала;
  • частота вращения двигателя;
  • положение рычага переключения передач (для авт. трансмиссии);положение переключателей кондиционера, габаритов;
  • напряжение бортовой сети;
  • температура двигателя;
  • температура и количество воздуха, поступающего в двигатель;
  • положение дроссельной заслонки;
  • напряжение датчика содержания кислорода (т.н. l - зонд);
  • напряжение датчика детонации;
  • абсолютное давление (разрежение) во впускном коллекторе;
  • напряжение датчика холостого хода (ХХ).

Некоторые системы используют дополнительные датчики и исполнительные устройства:

  • датчик атмосферного давления;
  • датчик детонации;
  • форсунка холодного пуска;
  • эл./мех. клапан управления ХХ;
  • клапан дополнительного воздуха;
  • клапаны компенсации включения кондиционера и др. нагрузки;
  • датчик ВМТ.

Описание назначения и принципа работы основных узлов системы впрыска топлива.

Система подачи топлива предназначена для подачи необходимого количества топлива в двигатель при различных режимах работы. Для этого бензин нагнетается из топливного бака насосом через топливный фильтр к распределителю с электромагнитными форсунками. Форсунки, под воздействием импульсов напряжения, впрыскивают топливо дозированными порциями во впускной коллектор. Часть топлива через регулятор давления поступает обратно в бак, который поддерживает постоянной разность давления на форсунках (обычно 300 кРа). Иногда в топливную систему встраивается демпфер для гашения нежелательных пульсаций давления.

Топливный насос высокого давления с электрическим приводом непрерывно нагнетает бензин из топливного бака. Он может быть, встроен не­посредственно в топливный бак (погружной) или расположен снаружи (магистральный). Создаваемое насосом давление - до 600 кРа.

Топливный фильтр. Загрязнения в топливе и в баке могут негативно сказываться на работоспособности форсунок, топливного насоса. Поэтому топливная система обязательно оснащена топливным фильтром высокого давления (пористость не более 10 мкм). Перед насосом установлен т.н. первичный топливный фильтр.

Вакуумный регулятор давления в топливной системе (рис.7). Количество поступающего во впускной коллектор топлива должно определятся только временем открывания форсунки (Tf). Поэтому разница между давлением во впускном коллекторе (Рвп.) и в топливной системе, (Рт.) должна оставаться постоянной. Вакуумный регулятор, управляемый разрежением впускного коллектора, поддерживает эту разницу постоянной (расположен в топливной магистрали). Обычно давление в топливной системе составляет 220. 260 кРа с вакуумом и 250. 300 кРа - без.

Электромагнитная форсунка предназначена для дозированной подачи топлива во впускной коллектор двигателя. Количество топлива определяется длительностью управляющих импульсов и давлением в топливной системе. Активное сопротивление форсунок колеблется от единиц до десятков Ом.

Датчик количества воздуха. Датчик установлен между воздушным фильтром и дроссельной заслонкой. Он производит измерение количества воздуха, поступающего в двигатель. Показания датчика определяют количество топлива поступающего в цилиндры. Обычно в корпусе датчика есть воздушный обходной канал переменного сечения для регулировки содержания СО. Чаще всего используются датчики флюгерного и анемометрического типа(MAF). При использовании анемометрического датчика, основными датчиками нагрузки являются положение потенциометра датчика дроссельной заслонки и разрежение во впускном коллекторе.

Датчик разрежения во впускном коллекторе (MAP) предназначен для измерения абсолютного давления во впускном коллекторе. Он представляет собой мембрану, которая, деформируясь, изменяет сопротивление. Так как ток ЭБУ, протекающий через датчик, является величиной постоянной, то изменение сопротивления вызывает изменение выходного напряжения датчика в зависимости от абсолютного давления. Диапазон значений выходного напряжения определяется типами системы впрыска топлива и двигателя.

Датчик положения дроссельной заслонки определяет ее состояние и угол поворота. Этот датчик информирует ЭБУ о режимах работы двигателя (холостой ход, частичная или полная нагрузка) для определения алгоритма управления топливной системой (расположен на блоке дроссельной заслонки). Различают два типа датчиков: - контактный (обычно, используется совместно с датчиком количества воздуха (MAF) или разрежения во впускном коллекторе); - потенциометрический (для датчиков MAP).

Датчики частоты вращения и положения. Положение поршня в цилиндре является основным для определения момента подачи искры и топлива. Для определения этих моментов времени используется датчик положения (обычно он расположен в трамблере). Возможно применение отдельного датчика.

Т.к. существует параметр угол опережения зажигания, зависящий от частоты вращения, то ЭБУ должен получать значения частоты вращения в каждый момент времени. Это реализуется с помощью датчика частоты (он также расположен в трамблере).

Коэффициент избытка воздуха измеряется Лямбда-зондом, который расположен в выпускном коллекторе до катализатора. При a=1 смесь является оптимальной. На некоторых типах автомобилей после катализатора установлен дополнительный датчик для учета "старения" основного. В зависимости от напряжения Лямбда-зонда, ЭБУ корректирует параметры топливно-воздушной смеси.

Зонд (Рис.8) представляет собой керамический корпус, в котором установлены платиновые электроды (рис.6). Один из них находится в потоке выхлопных газов, а второй соприкасается с атмосферой. При высокой температуре керамика пропускает молекулы кислорода. При разном количестве кислорода у электродов создается разность потенциалов, которая характеризует степень обогащения топливовоздушной смеси. В некоторых двигателях используются зонды с подогревом электродов.

Датчики температуры двигателя и воздуха. Датчик температуры расположен в системе охлаждения и измеряет температуру двигателя. Таким же образом производится измерение температуры поступающего в двигатель воздуха (расположен в корпусе воздушного фильтра или датчика потока воздуха). В зависимости от температуры двигателя изменяется степень обогащения топливной смеси при прогреве двигателя и обороты ХХ.

Напряжение аккумуляторной батареи.

Время срабатывания и отпускания электромагнитной форсунки зависит от величины подводимого напряжения. Если во время работы двигателя возникают колебания напряжения бортовой сети, то ЭБУ корректирует погрешности срабатывания изменением времени открывания форсунки.

Катализатор. Как известно, трёхкомпонентный катализатор производит нейтрализацию («доработку» до безвредного состояния) CO, NОx и CH. Он состоит из керамического каркаса, который имеет слой из металлов, чаще всего платины и родия. При прохождении выхлопных газов через керамику, как и любой катализатор, эти хим. элементы не участвуя непосредственно в химической реакции, ускоряют химический процесс нейтрализации. Использование бензина, содержащего тетраэтилсвинец, пассивирует их активную поверхность, что резко снижает эффективность процесса каталитической обработки выхлопных газов.

Необходимость в проверке состояния катализатора возникает при следующих симптомах. "Тупость" машины после некоторой скорости, причем прогрессирующая в сторону уменьшения той скорости, при которой наблюдается описываемое. Невозможность достижения скорости, которая ранее для данного авто была доступна. Т.е. машина не едет 160, потом 140, и т.д. (цифры условные).

Проверка заключается в снятии катализатора, визуального осмотра "на просвет", оценки степени "забитости". Размер сот в катализаторах примерно 1.5х1.5 мм и длине 100 и более мм. Двигатель начинает "кушать" масло, не сразу слишком много и, до определенного момента, владелец с этим мирится, но процесс ухудшения пропускной способности уже пошел. Крайнее состояние-это когда двигатель перестанет заводится. Проверки всего, что можно проверить даёт "All is Ok", и только после "освобождения" выпускного коллектора двигатель заводится. Механизм, я думаю, понятен - это ухудшение пропускной способности выхлопной системы, и как следствие, ухудшение вентиляции цилиндров.

При возникновении в инжекторной системе неисправности, необходимо провести диагностику её датчиков и исполнительных устройств. Желательно провести считывание кодов самодиагностики и компьютерную диагностику инжекторной системы и проверить следующие параметры:

  • состояние воздушного фильтра;
  • начальный угол опережения зажигания;
  • состояние вакуумного корректора опережения зажигания;
  • давление в топливной системе;
  • состояние Лямбда-зонда;
  • топливный фильтр и состояние топливной системы;
  • датчик положения дроссельной заслонки;
  • датчик потока воздуха или разрежения;
  • разрежение во впускном коллекторе(отсутствие т.н.подсоса" воздуха и герметичность вакуумной системы);
  • крышку и ротор трамблера, состояние свечей, свечных проводов и наконечников;
  • клапан-регулятор ХХ;
  • время открывания форсунок на ХХ и их исправность;
  • датчик температуры для ЭБУ;
  • компрессию в цилиндрах;
  • форсунку холодного пуска и её датчик температуры;
  • термостат;
  • датчики положения и вращения;
  • клапаны компенсации нагрузки (гидроусилителя, света, кондиционера);
  • регулировка содержания СО и ХХ;
  • состояние ремня ГР и "правильность установки "меток" системы ГР;
  • состояние выхлопной системы (катализатора);
  • исправность системы вентиляции картерных газов;
  • правильность регулировки клапанов.

Наверняка из практики ремонта этот, и без того обширный, список может быть пополнен.

Хочется напомнить Вам, инжекторная система управления топливом, не побоюсь этих слов, нежная и чуткая система, нарушать регулировки которой без соответствующей диагностики, навыков, повода, не стОит… Подход «давай покрутим - может быть станет лучше» еще как-то можно объяснить для «мастеров» (в конце концов, Ваш автомобиль для них чужой), но на своей ласточке просто что-то крутить (даже из лучших побуждений) не стоит.

Материалы: http://demio121.narod.ru/inj/on.htm

3 ≫

В каждом современном автомобиле есть система подачи топлива. Ее предназначение заключается в подаче топлива из бака в мотор, его фильтрации, а также образовании горючей смеси с последующим ее поступлением в цилиндры ДВС. Какие бывают виды СПТ и в чем заключается их отличия — об этом мы расскажем ниже.

Как правило, большая часть систем впрыска схожи между собой, принципиальное различие может заключаться в смесеобразовании.

Основные элементы топливных систем, вне зависимости от того, о бензиновых или дизельных двигателях идет речь:

  1. Бак, в котором хранится горючее. Бак представляет собой емкость, оснащенную насосным устройством, а также фильтрующим элементом для очистки горючего от грязи.
  2. Топливные магистрали представляют собой набор патрубков и шлангов, предназначенный для подачи топлива из бака в двигатель.
  3. Узел смесеобразования, предназначенный для образования горючей смеси, а также дальнейшей ее передачи в цилиндры, в соответствии с тактом работы силового агрегата.
  4. Управляющий модуль. Он используется в инжекторных моторах, это связано с необходимостью контроля различных датчиков, клапанов и форсунок.
  5. Сам насос. Как правило, в современных авто применяются погружные варианты. Такой насос представляет собой небольшой по размерам и мощности электромотор, подключенный к жидкостному насосу. Смазка устройства реализуется с помощью топлива. Если в бензобаке будет менее пяти литров горючего, это может привести к поломке мотора.
СПТ на моторе ЗМЗ-40911.10

Для того, чтобы отработанные газы меньше загрязняли окружающую среди, автомобили оборудуются каталитическими нейтрализаторами. Но со временем стало понятно, что их использование является целесообразным только в том случае, если в двигателе образуется качественная горючая смесь. То есть если в образовании эмульсии имеются отклонения, то эффективность использования катализатора значительно снижается, именно поэтому со временем производители авто перешли с карбюраторов на инжекторы. Тем не менее, их эффективность также была не особо высокой.

Чтобы система могла в автоматическом режиме корректировать показатели, впоследствии в нее был добавлен модуль управления. Если помимо каталитического нейтрализатора, а также кислородного датчика, используется блок управления, это выдает довольно неплохие показатели.

Какие преимущества характерны для таких систем:

  1. Возможность увеличения эксплуатационных характеристик силового агрегата. При правильной работе мощность двигателя может быть выше 5% заявленной производителем.
  2. Улучшение динамических характеристик авто. Инжекторные моторы достаточно чувствительные по отношению к изменению нагрузок, поэтому они могут самостоятельно корректировать состав горючей смеси.
  3. Образованная в правильных пропорциях горючая смесь сможет значительно снизить объем, а также токсичность выхлопных газов.
  4. Инжекторные моторы, как показала практика, отлично запускаются при любых погодных условиях, в отличие от карбюраторов. Разумеется, если речь не идет о температуре -40 градусов (автор видео — Сергей Морозов).

Теперь предлагаем ознакомиться с устройством инжекторной СПТ. Все современные силовые агрегаты оборудуются форсунками, их число соответствует количеству установленных цилиндров, а между собой эти детали соединяются с помощью рампы. Само горючее в них содержится под невысоким давлением, которое создается благодаря насосному устройству. Объем поступающего топлива зависит от того, как долго открыта форсунка, а это, в свою очередь, контролируется управляющим модулем.

Для корректировки блок получает показания с различных контроллеров и датчиков, расположенных в разных частях автомобиля, предлагаем ознакомиться с основными устройствами:

  1. Расходомер или ДМРВ. Его предназначение заключается в определении наполненности цилиндра двигателя воздухом. Если в системе имеются неполадки, то его показания блок управления игнорирует, а для формирования смеси использует обычные данные из таблицы.
  2. ДПДЗ — положения дросселя. Его назначение заключается в отражении нагрузки на мотор, которая обусловлена положением дроссельной заслонки, оборотами мотора, а также цикловым наполнением.
  3. ДТОЖ. Контроллер температуры антифриза в системе позволяет реализовать управления вентилятором, а также произвести регулировку подачи горючего и зажигания. Разумеется, все это корректирует блок управления, основываясь на показаниях ДТОЖ.
  4. ДПКВ — положения коленвала. Его назначение заключается в синхронизации работы СПТ в целом. Устройство осуществляет расчет не только оборотов силового агрегата, но и положения вала в определенный момент. Само по себе устройство относится к полярным контроллерам, соответственно, его поломка приведет к невозможности эксплуатации автомобиля.
  5. Лямбда-зонд или кислородный датчик. Он используется для определения объема кислорода в выхлопных газах. Данные от этого устройства поступают на управляющий модуль, который, основываясь на них, производит корректировку горючей смеси (автор видео — Avto-Blogger.ru).

Что такое Джетроник, какие бывают виды СПТ бензиновых двигателей?

Предлагаем более подробно ознакомиться с вопросом разновидностей:

  1. СПТ с центральным впрыском. В данном случае бензин подача бензина реализуется благодаря форсункам, находящимся во впускном коллекторе. Так как форсунка используется только одна, такие СПТ также называются моовпрысками. В настоящее время такие СПТ не актуальны, поэтому в более современных авто они попросту не предусмотрены. К основным достоинствам таких систем относятся простота эксплуатации, а также высокая надежность. Что касается минусов, то это пониженная экологичность мотора, а также довольно высокий расход горючего.
  2. СПТ с распределенным впрыском или К-Джетроник. В таких узлах предусматривается подача бензина отдельно на каждый цилиндр, который оборудован форсункой. Сама горючая смесь формируется во впускном коллекторе. На сегодняшний день большая часть силовых агрегатов оборудуются именно такими СПТ. К их основным достоинствам можно отнести довольно высокую экологичность, приемлемый расход бензина, а также умеренные требования по отношению к качеству потребляемого бензина.
  3. С непосредственным впрыском. Такой вариант считается одним из наиболее прогрессивных, а также совершенных. Принцип действия данной СПТ заключается в прямом впрыске бензина в цилиндр. Как показывают результаты многочисленных исследований, такие СПТ дают возможность добиться наиболее оптимального и качественного состава топливовоздушной смеси. Причем на любом этапе работы силового агрегата, что позволяет значительно улучшить процедуру сгорания смеси и во многом повысить эффективность работы ДВС и его мощность. Ну и, разумеется, снизить объем отработавших газов. Но нужно учитывать, что такие СПТ имеют и свои недостатки, в частности, более сложную конструкцию, а также высокие требования к качеству используемого бензина.
  4. СПТ с комбинированным впрыском. Данный вариант является, по сути, результатом объединения СПТ с распределенным и непосредственным впрыском. Как правило, он используется для того, чтобы снизить объем токсичных веществ, вбрасываемых в атмосферу, а также отработанных газов. Соответственно, используется он для повышения показаний экологичности мотора.
  5. Система L-Джетроник еще использовалась в бензиновых двигателях. Это система попарного впрыска топлива.

Фотогалерея «Разновидности бензиновых систем»

Основные виды СПТ в дизельных двигателях:

  1. Насос-форсунки. Такие СПТ используются для подачи, а также дальнейшего впрыска образованной эмульсии под высоким давлением с помощью насос-форсунок. Основной особенностью таких СПТ является то, что насос-форсунки выполняют опции образования давления, а также непосредственно впрыска. Такие СПТ имеют и свои недостатки, в частности, речь идет о насосе, оборудованном специальным приводом постоянного тип от распределительного вала силового агрегата. Этот узел является не отключаемым, соответственно, он способствует повышенному износу конструкции в целом.
  2. Именно из-за последнего недостатка большинство производителей отдают предпочтение СПТ типа Common Rail или аккумуляторного впрыска. Такой вариант считается более совершенным для многих дизельных агрегатов. СПТ имеет такое название в результате использования топливной рамы — основного элемента конструкции. Рампа используется одна для всех форсунок. В данном случае подача топлива осуществляется к форсункам от самой рампы, она может называться аккумулятором повышенного давления.

Подача горючего осуществляется в три этапа — предварительный, основной, а также дополнительный. Такое распределение дает возможность снизить шум и вибрации при работе силового агрегата, сделать его работу более эффективной, в частности, речь идет о процессе возгорания смеси. Кроме того, это также позволяет и снизить объем вредоносных выбросов в окружающую среду.

Вне зависимости от вида СПТ, дизельные агрегаты тоже управляются с помощью электронных либо механических устройств. В механических вариантах устройства контролируют уровень давления и объема составляющих смеси и момента впрыска. Что касается электронных вариантов, то они позволяют обеспечить более эффективное управление силовым агрегатом.

Как производится управления работой СПТ — наглядный урок представлен в ролике ниже (автор видео — Михаил Нестеров).

  • Основные аспекты ремонта систем впрыска K и KE-Jetronic
  • Круиз-контроль: современному водителю на заметку
  • Мастерим генератор дыма для автомобиля своими руками

  • Иван Иванович Баранов

    Опыт работы на СТО:

    Посмотреть все ответы

    Avtozam.com - ваш помощник в ремонте и обслуживании авто

    Использование вами данного веб-сайта означает ваше согласие с тем, что вы используете его на свой страх и риск.

    Материалы: http://avtozam.com/elektronika/auxiliary/sistema-podachi-topliva/


  • Back to top