1 ≫
-
Ультразвук, звук частотой более 16 кГц, человек не воспринимает, тем не менее, скорость его распространения в воздушной среде известна, и составляет 344 м/с. Располагая данными о скорости звука и времени его распространения, можно вычислить точное расстояние, которое прошла ультразвуковая волна. Этот принцип положен в основу работы ультразвуковых датчиков.
Ультразвуковые датчики широко применяются в самых разных сферах производства, и в некотором роде являются универсальным средством решения многих задач автоматизации технологических процессов. Такие датчики применяются для определения удаленности и местонахождения различных объектов.
Определение уровня жидкости (например, расхода топлива на транспорте), обнаружение этикеток, в том числе и прозрачных, контроль передвижения объекта, измерение расстояния, - вот лишь некоторые из возможных применений ультразвуковых датчиков.
Как правило, на производствах немало источников загрязнения, что может стать проблемой для многих механизмов, но ультразвуковой датчик, в силу особенностей его работы, абсолютно не боится загрязнений, поскольку корпус датчика, при необходимости, может быть надежно защищен от возможных механических воздействий.
Ультразвуковой датчик содержит в своей конструкции пьезоэлектрический преобразователь , который является и излучателем и приемником. Пьезоэлектрический преобразователь излучает пакет звуковых импульсов, затем принимает эхо, и преобразует сигнал в напряжение, которое подается на контроллер. Здесь читайте подробнее про использование в технике пьезоэлектрического эффекта.
Ультразвуковая частота находится в диапазоне от 65 кГц до 400 кГц, в зависимости от типа датчика, а частота следования импульсов - между 14 Гц и 140 Гц. Контроллер обрабатывает данные, и вычисляет расстояние до объекта.
Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения. Диапазон обнаружения – это то расстояние, в пределах которого ультразвуковой датчик может обнаружить объект, и неважно, приближаются ли объект к чувствительному элементу в осевом направлении или двигается поперек звукового конуса.
Встречаются три основных режима работы ультразвуковых датчиков : оппозитный режим, диффузионный режим, и рефлекторный режим.
Для оппозитного режима характерны два отдельных устройства, передатчик и приемник, которые монтируются друг напротив друга. Если ультразвуковой пучок прерывается объектом, выход активизируется. Такой режим подходит для работы в тяжелых условиях, когда важна устойчивость к интерференции. Ультразвуковой пучок только один раз проходит сигнальное расстояние. Такое решение отличается высокой стоимостью, поскольку требуется монтаж двух устройств – передатчика и приемника.
Диффузионный режим обеспечивается передатчиком и приемником, находящимися в одном корпусе. Стоимость такого монтажа значительно ниже, однако время срабатывания дольше, чем при оппозитном режиме.
Диапазон обнаружения здесь зависит от угла падения на объект и от свойств поверхности объекта, поскольку луч должен отражается от поверхности самого обнаруживаемого объекта.
Для рефлекторного режима излучатель и приемник также находятся в одном корпусе, однако ультразвуковой луч теперь отражается от рефлектора. Объекты в диапазоне обнаружения обнаруживаются как путем измерения изменений в расстоянии, которое проходит ультразвуковой луч, так и путем оценки потерь на поглощение или отражение в отраженном сигнале. Звукопоглощающие предметы, а также предметы с угловыми поверхностями легко обнаруживаются при таком режиме работы датчика. Важное условие – не должно изменяться положение опорного рефлектора.
Еще один вариант использования инфразвука в промышленности - ультразвуковая сварка.
Материалы: http://electricalschool.info/automation/1548-ultrazvukovye-datchiki.html
2 ≫
-
§ 13.1. Принцип действия и назначение
Работа ультразвуковых датчиков основана на взаимодействии ультразвуковых колебаний с измеряемой средой. К ультразвуковым относят механические колебания, происходящие с частотой более 20 000 Гц, т. е. выше верхнего предела звуковых колебаний, воспринимаемых человеческим ухом. Распространение ультразвуковых колебаний в твердых, жидких и газообразных средах зависит от свойств среды. Например, скорость распространения этих колебаний для разных газов находится в пределах от 200 до 1300 м/с, для жидкостей —от 1100 до 2000, для твердых материалов— от 1500 до 8000 м/с. Очень сильно выражена зависимость скорости колебаний в газах от давления.
Различны коэффициенты отражения ультразвуковых волн на границе раздела разных сред, различна и звукопоглощательная способность разных сред. Поэтому в ультразвуковых датчиках информация о различных неэлектрических величинах получается благодаря измерению параметров ультразвуковых колебаний: времени их распространения, затухания амплитуды этих колебаний, фазового сдвига этих колебаний.
Ультразвуковые методы измерения относятся к электрическим методам постольку, поскольку возбуждение ультразвуковых колебаний и прием этих колебаний выполняются электрическим способом. Обычно для этого используют пьезоэлементы и магнито-стрикционные преобразователи. В гл. 7 были рассмотрены пьезоэлектрические датчики, преобразующие давление в электрический сигнал. Это прямой пьезоэффект. Он используется в приемниках ультразвукового излучения. Обратный пьезоэлектрический эффект заключается в сжатии и растяжении пьезокристалла, к которому приложено переменное напряжение. Для возбуждения ультразвуковых колебаний и используется этот эффект. Таким образом, пьезоэлемент может использоваться попеременно то излучателем, то приемником ультразвуковых колебаний.
Магнитострикционные излучатели ультразвука используют явление деформации ферромагнитов в переменном магнитном поле.
Поясним работу ультразвукового датчика на примере эхолота — прибора для измерения глубины моря (рис. 13.1). При подаче переменного напряжения на пьезоэлемент 1 возбуждаются ультразвуковые колебания, направленные вертикально вниз.
Отраженный ультразвуковой импульс воспринимается пьезоэлементом 2. Электрический прибор 3 измеряет время t между посылаемым и принимаемым импульсами. Глубина моря пропорциональна этому времени и скорости распространения звука v в воде:
Шкала прибора градуируется непосредственно в метрах. Аналогично действует ультразвуковой локатор, определяющий расстояние до препятствия на пути корабля в горизонтальном направлении. Некоторые животные (например, летучие мыши и дельфины) имеют органы ориентировки, действующие по принципу ультразвукового локатора.
Ультразвуковые колебания имеют энергию значительно большую, чем звуковые, поскольку энергия пропорциональна квадрату частоты. Кроме того, сравнительно просто осуществляется направленное излучение ультразвука.
С помощью ультразвуковых датчиков обнаруживают дефекты в металлических деталях: трещины в изделиях, полости в отливках и т. д. Ультразвуковые датчики играют важную роль в дефектоскопии, в неразрушающих методах контроля. Кроме того, ультразвуковые датчики используются в приборах для измерения расхода, уровня, давления.
§ 13.2. Излучатели ультразвуковых колебаний
В ультразвуковых электрических датчиках наибольшее распространение получили магнитострикционные и пьезоэлектрические излучатели, возбуждаемые с помощью полупроводниковых и электронных генераторов, вырабатывающих переменное напряжение с частотой более 10 кГц. Часто применяется и импульсное возбуждение ультразвуковых излучателей.
Магнитострикционный излучатель стержневого типа (рис. 13.2, а) представляет собой набор тонких листов из ферромагнитного материала, на который намотана обмотка возбуждения. Чаще всего в магнитострикдионных излучателях используется никель й его
сплавы (инвар и монель), а также ферриты. Форма пластины показана на рис. 13.2, б.
Если стержень из ферромагнитного материала находится в переменном магнитном поле, то он будет попеременно сжиматься и разжиматься, т. е. деформироваться. Зависимость относительного изменения длины стержня из никеля от напряженности магнитного поля Н показана на рис. 13.3. Так как знак деформации не зависит от направления поля, то частота колебаний деформации будет в два раза больше частоты переменного возбуждающе-
го поля. Для получения больших механических деформаций используют постоянное подмагничивание стержня, чтобы работать на наиболее крутом участке кривой (рис. 13.3).
Магнитострикционные излучатели работают в условиях резонанса, когда частота возбуждающего поля совпадает (настроена в резонанс) с частотой собственных упругих колебаний стержня, которая определяется по формуле
где / — длина стержня; Е — модуль упругости; р — плотность материала.
Для никелевого стержня длиной /=100 мм частота собственных колебаний составляет 24,3 кГц, амплитуда достигает примерно 1 мкм. Наивысшая частота, на которой еще удается возбудить достаточно интенсивные колебания, составляет 60 кГц, что соответствует длине 40 мм. Помимо основной частоты в стержне можно возбудить и колебания на высших гармониках (при соответствующем креплении стержня), но с меньшей амплитудой.
В пьезоэлектрическом излучателе ультразвуковых колебаний используется пластина кварца (рис. 13.4), к которой приложено переменное напряжение Uх, создающее электрическое поле в направлении электрической оси X (см. рис. 7.1). Продольный обратный пьезоэффект заключается в деформации пластины по оси X.
При этом относительное изменение толщины пластины
(13.3)
Поперечный обратный пьезоэффект заключается в деформации пластины в направлении механической оси У. При этом относительное изменение длины пластины
(13.4)
Как видно из (13.3), продольная деформация не зависит от раз метров пластины, а поперечная деформация, как следует из (13.4), увеличивается с ростом отношения l/а. При напряжениях до 2,5 кВ сохраняется прямая пропорциональность между величиной деформации и напряжением. При больших напряжениях деформация увеличивается не столь быстро и при 1)х= =25 кВ оказывается на 30% меньшей, чем рассчитанная по (13.3) и (13.4). Амплитуда колебаний достигает максимума при равенстве частоты приложенного напряжения и частоты собственных колебаний пластины.
Частота собственных продольных колебаний определяется по формуле, аналогичной (13.4), где модуль упругости берется в направлении оси X:
Частота собственных поперечных колебаний зависит от модуля упругости в направлении оси У:
Для кварцевых пластин f0=285/c [кГц] и f/=272,6// [кГц], где размеры пластины выражены в сантиметрах.
По сравнению с магнитострикционными пьезоэлектрические излучатели обеспечивают значительно большую (на 1—2 порядка) частоту ультразвуковых колебаний.
§ 13.3. Применение ультразвуковых датчиков
В ультразвуковых уровнемерах и дефектоскопах используется свойство ультразвука отражаться от границы двух сред. Соотношение между энергиями отраженных и падающих колебаний называется коэффициентом отражения. Этот коэффициент весьма велик для сред, существенно отличающихся по плотности и скорости распространения звука. Например, коэффициент отражения на границе вода — сталь составляет 88, а на границе вода — трансформаторное масло он равен 0,6. Но даже и при малых коэффициентах отражения полученный отраженный сигнал вполне достаточен для измерения положения уровня раздела двух сред. Мерой
уровня является время распространения колебании от источника излучения к границе раздела и обратно к приемнику. Эти величины уровня и времени связаны между собой соотношением (13.1). Благодаря свойству ультразвуковых колебаний распространяться в любых упругих средах между излучателем и измеряемой средой может находиться металлическая стенка, что позволяет вести измерение без контакта измерительных элементов с контролируемой средой и без электрических вводов в резервуар.
В ультразвуковых уровнемерах используется в основном импульсный режим передачи колебаний в среду. При этом пьезоэле-мент может попеременно работать то излучателем, то приемником ультразвука. Схема ультразвукового уровнемера показана на рис. 13.5. Электрические высокочастотные импульсы от генератора 2 подаются по кабелю к пьезоэлементу датчика /, который излучает ультразвуковые колебания в измеряемую среду. Эти колебания отражаются от границы раздела сред и возвращаются к пьезоэлементу, который преобразует их в электрический сигнал. Этот сигнал усиливается усилителем 3 и подается на измерительное устройство 4, определяющее время между посылкой импульса генератором 2 и приходом импульса в усилитель 3. В результате многократного отражения посланного импульса могут вернуться три-четыре сигнала, убывающие по амплитуде и запаздывающие друг относительно друга на одинаковое время. Частота посылаемых импульсов должна быть не слишком большой, чтобы все отраженные сигналы успели вернуться до посылки следующего импульса. Ультразвуковые уравнемеры обеспечивают точность в 1% при измерениях уровня в 5—10 м в условиях высокой температуры, высокого давления, большой химической активности контролируемой среды. В воздухе ультразвуковые колебания затухают во много раз быстрее, чем в жидких (и вообще в более плотных) средах. Поэтому предпочтительнее располагать излучатель и приемник под резервуаром, а не сверху (рис. 13.5).
В ультразвуковом расходомере используется эффект сложения скорости распространения ультразвука в упругой среде со скоростью движения этой среды. Схема ультразвукового расходомера показана на рис. 13.6. Пьезоэлементы 1 и 2 располагаются вдоль трубопровода и возбуждаются от генератора 3 на частоте в несколько сотен килогерц. Каждый из пьезоэлементов попеременно с помощью переключателя 4 работает то излучателем, то приемником. Таким образом, ультразвуковые колебания посылаются то по потоку среды, то навстречу ему. В первом случае скорости колебаний и потока складываются, во втором случае — вычитаются. После прохождения по среде сигналы, принятые пьезоэле-ментами, усиливаются усилителем 5 и поступают попеременно на измерительное устройство 6. Разность фаз принятых колебаний будет пропорциональна скорости среды. Градуировка прибора выполняется для определенной среды. При использовании прибора для измерений расхода среды с другим значением скорости распространения ультразвука изменяется и градуировка.
Следует отметить, что измерительные схемы для ультразвуковых датчиков довольно сложны.
Материалы: http://baumanki.net/lectures/1-avtomatizaciya/44-elektromehanicheskie-i-magnitnye-elementy-sistem-avtomatiki/675-13-ultrazvukovye-datchiki.html
3 ≫
-
Ультразвуковой датчик расстояния точно так же, как и оптический, получил широкое использование в автоматизации на различных производствах. В отличие от дальномеров оптического типа, этот вид датчиков обладает меньшим диапазоном измерительных значений, а также значительно меньшую скорость измерений.
Существует несколько преимуществ: сравнительно высокая точность прибора, низкая чувствительность в загрязнению воздуха окружающей среды, к окраске поверхности объектов, а также имеет огромный диапазон температур, при которых его можно эксплуатировать.
Ультразвуковые датчики достаточно компактны, обладают качественной конструкцией, в них отсутствуют различные подвижные детали. Кроме того, оборудование практически не требует обслуживания.
Ультразвуковые датчики используются для вычисления временного промежутка, который может потребоваться звуку для движения от прибора к тому или иному объекту и назад к датчику (функционирование в диффузионном режиме), либо для проверки — был ли принят отправленный сигнал определенным отдельным приемником (для оппозиционного режима работы).
Датчик положения применяется с целью контроля наличия или местоположение разных механизмов, а также для того, чтобы осуществлять подсчет присутствующих объектов. Такой прибор может быть использован и в роли сигнализатора предельного уровня разного рода жидкости либо сыпучих веществ.
Принцип работы ультразвукового датчика положения поддерживает два режима:
При оппозиционном режиме функционирования передатчик с приемником представляют собой отдельные устройства, которые устанавливают один напротив другого.
Выделяют несколько особенностей:
- Большой диапазон, ведь ультразвуковой пучок преодолевает сигнальное расстояние всего лишь один раз;
- Достаточно быстрое переключение;
- Не очень воспринимает интерференцию, что позволяет использовать его в довольно трудных условиях;
- Сравнительно высокая стоимость монтажных работ, потому что необходимо установить два датчика — передатчик и приемник.
Перед подключением к лампочке датчик необходимо отрегулировать его и не допускать загрязнений поверхности, поскольку это может негативно влиять на работоспособность детектора.
Диффузионным режимом работы называют функционирование датчиков в том случае, когда излучатель с приемником размещены в одном корпусе.
Принцип работы ультразвуковых датчиков расстояния и перемещение практически ничем не отличается от выше рассмотренного прибора. Небольшая разница заключается лишь в том, что на выходе присутствует аналоговый сигнал, а не дискретный.
Датчики такого типа используются с целью преобразования линейных показателей расстояния до обнаруженного объекта в электрические сигналы, которые соответствуют стандарту 4-20 мА либо 0-10 Вольт. Точность измерения является не менее 0,5 мм при расстоянии меньше одного метра, а также примерно 1 мм, если расстояние составляет более одного метра.
Но перед монтажом автомата в электрощиток необходимо оценить характеристики его срабатывания в различных ситуациях. Успех монтажа и замены электропроводки в квартире зависит от правильно составленных типовых схем и строгого следования этапам работ по установке.
Датчики с аналоговым выходом и настройкой верхней границы измерений требуют указания верхнего предела измерения расстояния. Это выполняется благодаря шлиц потенциометру, который выведен на корпусе прибора.
Ультразвуковой датчик с двумя цифровыми выходами, а также памятью порогов включения, имеет целый ряд особенностей. Так, для порогового регулирования необходимо, чтобы величина провиса либо уровень жидкости не должны превышать одну величину или же быть значительно меньше другой. Привод данного регулятора можно присоединять к корпусу только одного прибора. Настройка порогов срабатывания двух выходов происходит с помощью кнопки, которая находится на панели датчика.
Возможность устанавливать два датчика близко друг к другу объясняется организацией их попеременного действия, что позволяет такая особенность, как вход синхронизации. Благодаря этому можно создавать регулятор с четырьмя порогами, проводящий независимые измерения по обеих парах порогов срабатывания.
Москва, ул. Зои И Александра Космодемьянских, 26 +7 (499) 350-26-73
Материалы: http://elektrik24.net/elektrooborudovanie/datchiki/rasstoyaniya/ultrazvukovoj.html