1 ≫
-
К концу XVIII века человечество осознало необходимость найти замену сложным и требующим слишком много внимания паровым машинам. Основную часть промышленного сектора в тот момент составляли небольшие предприятия и мастерские. Наиболее распространенными на производстве двигателями на тот момент громоздкие паровые машины. Они устраивали далеко не всех. Инженеры понимали, что для повышеня эффективности производства необходимы другие силовые установки - легко запускающиеся, малых размеров и мощности.
История изобретения бензинового двигателя
Предтечей появления двигателей внутреннего сгорания стало открытие светильного газа, сделанное на рубеже XVIII и XIX столетий французским инженером Ф. Лебоном.
Патент на способ его получения и использования он получил в 1799 году. Светильный газ стал настоящим прорывом в технике освещения.
А уже через 2 года Лебоном был получен следующий патент - на разработанную им конструкцию газового двигателя. Он состоял из камер смешения и двух компрессоров. Один из них накачивал в камеру сжатый воздух, другой – сжатый светильный газ из газогенератора. Эта смесь поступала в рабочий цилиндр и воспламенялась. Рабочие камеры располагались по обе стороны поршня и действовали попеременно.
Газовый двигатель стал первым шагом к созданию двигателя внутреннего сгорания. Но, к сожалению, разработки в этом направлении приостановились с трагической гибелью Лебона. Дальнейшие попытки многих изобретателей не привели к появлению газовой силовой установки, способной конкурировать с паровой.
Первым в мире двигателем внутреннего сгорания считается агрегат, запатентованный Жаном Этьеном Ленуаром в 1859 году.
Бельгийский инженер решил воспламенять газовую смесь с помощью электрической искры. Двигатель Ленуара был двойного действия. Воздух и газ поочередно подавались нижним золотником в полости цилиндров, расположенных по обе стороны поршня. За выпуск отработанных газов отвечал верхний золотник. Воздух и газ поступали к золотнику по отдельным каналам, при этом всасывание смеси в полость происходило только до половины хода. Потом впускное окно перекрывалось, и электрическая искра воспламеняла получившуюся смесь, заставляя ее расширяться и толкать поршень. Когда реакция заканчивалась, второй золотник выпускал отработанные газы. В это время в цилиндре, расположенном с другой стороны поршня, происходило воспламенение топливовоздушной смеси.
Чтобы избежать заклинивания поршня из-за термического расширеня, Ленуар дополнил свою конструкцию водяной системой охлаждения и системой смазки. Несмотря на низкий КПД (около 4%), сбои в системе зажигания, большой расход газа и смазки, двигатели Ленуара получили большое распространение и имели коммерческий успех.
В 1864 году появилась более совершенная газовая силовая установка, разработанная Августом Отто. Хотя он и отказался от электрического зажигания, предложенная им конструкция позволила добиться более полного расширения продуктов сгорания, а значит, и повысить КПД двигателя до 15%. Это превосходило показатели всех существовавших на тот момент устройств! К тому же, новый двигатель был экономичнее двигателя Ленуара в 5 раз.
Совершенствуя свое изобретение, Отто применил в конструкции кривошипно-шатунную передачу, заменившую зубчатую рейку. А вскоре, вместе с промышленником Лангеном, приступил к выпуску четырехтактных газовых двигателей. Этот цикл является основой работы ДВС и до сегодняшнего дня.
Использование светильного газа в качестве топлива для двигателей внутреннего сгорания существенно ограничивало область их применения, поэтому активные поиски доступной альтернативы не прекращались. В 1872 году американцем Брайтоном был предложен «испарительный» карбюратор, в котором в качестве топлива применялся керосин. Но конструкция его была слишком несовершенна.
По настоящему работоспособный бензиновый двигатель появился только спустя 10 лет. Его разработал Готлиб Даймлер, бывший членом правления фирмы Отто. Он представил проект бензиновой силовой установки, применимой на транспорте, но идея была отвергнута его патроном. Поэтому в 1882 году Даймлер и Майбах уходят из фирмы «Отто и компания» и создают собственную мастерскую. Их цель была амбициозна: создать легкий, компактный и мощный двигатель, способный перемещать экипаж.
Первое детище Даймлера и Майбаха было стационарным. Процесс испарения бензина и система зажигания в нем были далеки от совершенства.
Простую и надежную систему предложил конструктор Д. Банки в 1893 году. Изобретенный им карбюратор стал прообразом современных. После этого прогресс в развитии ДВС начал стремительно набирать обороты. Увеличивались объем цилиндров и их количество. Широкое распространение получили 4-цилиндровые силовые установки, обеспечивающие равномерность вращения коленчатого вала.
В первый раз бензиновый двигатель был использован на велоколяске Карла Бенца. Немецкий автоконструктор построил ее в 1885 году. Трехколесная машина развивала скорость до 16 км/ч. А через 13 лет Карл Бенц создал уже четырехколесную велоколяску, мощностью 3 лошадиные силы, которая могла «мчаться» со скоростью 30 км/ч!
Первый - в привычном нам понимании - автомобиль с бензиновым двигателем увидел свет в 1895 году. Его создали французские инженеры Р. Панар и Э. Левассор. Машина имела кузов типа седан и оснащалась силовой установкой Даймлера, которая располагалась впереди и закрывалась крышкой капота. Крутящийся момент передавался на задние колеса с помощью корданового вала. Автомобиль имел стенки кузова, лобовое стекло, крышу, резиновые шины, коробку передач и рычаг переключения скоростей. Так началась эпоха автомобилей с бензиновыми двигателями. Среди пионеров построения таких самоходных экипажей были З. Маркус, А. Пежо, Братья Рено, Ф. У. Ленчестер, Г. Остин и Г. Форд.
Устройство и принцип работы бензинового двигателя
Устройство и принцип работы современных бензиновых двигателей удобнее всего рассмотреть на примере одноцилиндровой четырехтактной установки, поскольку отличаются они только количеством цилиндров. Одноцилиндровый бензиновый двигатель состоит из: - глушителя; - пружины клапана; - карбюратора; - впускного клапана; - поршня; - свечи зажигания; - выпускного клапана; - шатуна; - маховика; - распределительного вала; - коленчатого вала.
Такт сжатия происходит при следующей половине оборота коленчатого вала. Поршень перемещается из НМТ в ВМТ. Оба клапана в этот момент остаются закрытыми. Рабочая смесь сжимается, в цилиндре возрастает давление и температура.
Такт расширения по сути является рабочим ходом. После завершения сжатия рабочей смеси, происходит ее воспламенение от искры, создаваемой свечой. Процесс сгорания приводит к возрастанию температуры и давления (2,500 гр.С и 5 МПа). Поршень начинает двигаться вниз и воздействует на шатун, который толкает коленчатый вал, предавая ему вращательное движение. Полезная работа такта расширения заключается в преобразовании тепловой энергии в механическую. Когда поршень приближается к НМТ, происходит открытие выпускного клапана, открывающего путь отработанным газам. Температура и давление в цилиндре падает (1,200 гр. С, 0,65 МПа).
Такт выпуска начинается с движением поршня в ВМТ. При этом выталкиваются отработанные газы в полностью открытый выпускной клапан. По окончании такта выпуска температура и давление в цилиндре падают (500 гр. С, 0,1 МПа). Но определенный процент отработанных газов остается в цилиндре и участвует в образовании рабочей смеси следующего такта.
Четыре такта работы двигателя повторяются циклически. Маховик, прикрепленный к коленчатому валу, способствует ровной и устойчивой работе установки.
Достоинства и недостатки бензиновых двигателей ДВС
Преимущества бензиновых ДВС - значительная мощности на единицу объема, большой ресурс, простота выхлопной системы.
Кроме того, следует отметить низкий уровень шума работы силовой установки и отсутствие необходимости в стартере. Бензиновые ДВС достигают больших оборотов и поэтому успешно применяются в небольших автомобилях и обеспечивают агрессивную динамику езды.
Недостатками бензиновых двигателей являются низкий КПД (до 30%), высокие требования к качеству топливной смеси и низкая эффективность на малых оборотов. В последнее время много нареканий звучит в адрес экологических показателей бензиновых ДВС. Высокое содержание в выхлопных газах окиси углерода пагубно влияет на окружающую среду.
Кроме этого, подобные двигатели укрепляют зависимость мирового автомобильного парка от, увы, небезграничных природных ресурсов. И, хотя, бензиновые ДВС далеко не полностью исчерпали свои потенциальные возможности, во всем мире ведутся активные поиски и разработки альтернативного топлива и источников энергии.
Материалы: http://blamper.ru/auto/wiki/dvigatel/benzinovyy-dvigatel-2750
2 ≫
-
Бензиновые двигатели – одна из разновидностей ДВС (двигателей внутреннего сгорания) в которых поджег смеси из воздуха и топлива, осуществляется в цилиндрах, посредством искр от свечей зажигания. Роль регулятора мощности выполняет дроссельная заслонка, которая регулирует поток поступающего воздуха.
Существует несколько видов дросселей, например карбюраторная дроссельная заслонка, регулирует количество поступающего в цилиндры ДВС топлива. Она состоит из пластины, закрепленной на главной вращающейся оси и помещенной в трубке, по которой и протекает топливо. Вращая пластинку, можно регулировать пропускную способность трубки (если пластинка находится в перпендикулярном положении относительно трубки, то топливо поступать не будет). Дроссель управляется водителем, наиболее распространена двойная система привода: ножная от педали и ручная от рычага или кнопки. При использовании педали, кнопка ручного управления блокируется, а при вытягивании кнопки ручного управления опускается педаль. В дальнейшем, дроссель опять открывается педалью, но при опускании педали, он остается в положении, установленным ручным управлением.
По кол-ву цилиндров – одноцилиндровые, двухцилиндровые, многоцилиндровые;
По системе охлаждения – двигатели с жидкостной и воздушной СО.
По типу смазки – смешанные (топливная смесь перемешивается с маслом), раздельный тип (масло заливается в картер).
По виду применяемого топлива: бензиновые или многотопливные.
По степени сжатия. Подразделяют двигатели высокого (E=12…18) и низкого (E=4…9) сжатия.
По способу смесеобразования - подразделяют на двигатели с внешним смесеобразованием, топливная смесь готовится вне цилиндров двигателя (газовые и карбюраторные), и двигатели с внутренним смесеобразованием (инжекторные – рабочая смесь образуется внутри цилиндров).
По размещению цилиндров – V-образные, у которых цилиндры располагаются под углом (если угол составляет 180 градусов, то двигатель является оппозитным [с противолежащими цилиндрами]). В "рядных" двигателях цилиндры располагаются вертикально или горизонтально в один ряд.
По способу осуществления рабочего цикла – двухтактные и четырехтактные. Двухтактные двигатели обладают большей мощностью на единицу объема, однако проигрывают в КПД. Поэтому они нашли свое применение там, где важна компактность, а не экономичность (мотоциклы, моторные лодки, бензопилы и другие моторизованные инструменты). Четырехтактные двигатели доминируют в остальных средствах передвижения. Интересен тот факт, что двухтактные дизельные двигатели лишены многих недостатков двухтактных бензиновых двигателей, однако применяются в основном на больших судах (иногда на тепловозах и грузовиках).
По частоте вращения: малооборотистые, повышенной частоты вращения, высокооборотистые.
По предназначению: стационарные, судовые, автотракторные, авиационные, тепловозные и др.
По способу подачи топлива: существуют атмосферные двигатели, в которых поступление топлива осуществляется за счет разницы атмосферного давления и давления внутри двигателя, при всасывающем ходе поршня; в двигателях с наддувом горючая смесь подается в цилиндр под давлением, которое поддерживается турбокомпрессором, для увеличения мощности двигателя.
1. Впуск. На этом такте происходит перемещение поршня из верхней мертвой точки (ВМТ) в нижнюю (НМТ). Кулачки распределительного вала открывают впускной клапан, через который в цилиндр всасывается новая горючая смесь.
2. Сжатие. Поршень переходит в прежнее состояние (из НМТ в ВМТ), сжимая при этом рабочую смесь. Согласно термодинамике, температура рабочей смеси увеличивается. Степенью сжатия называется отношение рабочего объема цилиндра в НМТ к объему камеры сгорания в ВМТ. Это очень важный параметр, на практике, чем он больше, тем экономичнее двигатель. Однако и тут есть противоречия, для двигателей с высокой степенью сжатия требуется особенное топливо, с более высоким октановым числом, которое стоит дороже.
3. Сгорание и расширение (рабочий ход поршня). Перед завершением цикла сжатия смесь топлива и воздуха поджигается искрой от свечи зажигания. Топливо сгорает во время движения поршня из ВМТ в НМТ, образуется газ, который расширяется, толкая поршень. Углом опережения зажигания называется степень "недоворота" коленвала двигателя до ВМТ при поджигании смеси. Необходимость преждевременного зажигания обосновывается тем, что процесс воспламенения горючей смеси медленный относительно скорости работы поршневых систем двигателя. Только в том случае, когда основная масса топлива успеет воспламениться, польза от использования энергии сгоревшего топлива будет максимальной. Процесс сгорания топлива занимает фиксированное время, поэтому, при повышении оборотов двигателя, необходимо увеличивать угол опережения зажигания, для повышения эффективности работы двигателя. Раньше, в старых автомобилях, использовалось механическое устройство (центробежный и вакуумный регулятор, который воздействовал на прерыватель). Сейчас в автомобилях установлена электроника, которая отвечает за определение угла опережения зажигания, работающая по емкостному принципу.
4. Выпуск. В последнем такте происходит вытеснение отработанных газов из цилиндра через выпускной клапан. Поршень перемещается из нижней мертвой точки в верхнюю, при достижении которой цикл начинается сначала. При этом совсем не необходимо, чтобы начало нового цикла совпадало с окончанием предыдущего. Положение, в котором открыты сразу два клапана: впускной и выпускной, называется перекрытием клапанов. Перекрытие клапанов способствует лучшему наполнению цилиндров топливом, а также более качественной очистки цилиндров от продуктов сгорания.
Двухтактный и четырехтактный цикл схожи лишь тем, что в них присутствует сжатие и расширение рабочего тела. Такты наполнения топливом двигателя и его последующей очистки от продуктов сгорания заменены продувкой двигателя вблизи НМТ положения поршня. А весь рабочий цикл укладывается в течение одного оборота коленвала.
Если говорить о двухтактном цикле, то он делится на следующие такты: изначально, поршень поднимается вверх, сжимая рабочую смесь в цилиндре, а также создавая разрежение в кривошипной камере. Клапан впускного коллектора открывается от воздействия этого разряжения, и новая порция горючей смеси (зачастую с добавлением масла) втягивается в кривошипную камеру. При опускании поршня вниз закрывается клапан в кривошипной камере, а также повышается давление. В остальном же: поджег, сгорание топлива, и расширение рабочего тела происходят идентично, как и в четырехтактных двигателях. Но есть один нюанс, в момент, когда поршень опускается, примерно за 60° до НМТ открывается выпускное окно (поршень перестает его перекрывать). Выхлопные газы, находящиеся под большим давлением, устремляются в выпускной коллектор через это окно. Немного позже, поршень открывает и впускное окно, которое расположено со стороны впускного коллектора. Новая порция топлива из кривошипной камеры, попадает в рабочий объем цилиндра, под воздействием опускающегося поршня, и вытесняет оставшиеся отработанные газы. При этом, небольшая часть рабочей смеси попадает в выпускной коллектор, однако на обратном ходе поршня она втягивается обратно в кривошипную камеру.
• Не требуется добавление масла в топливо.
• Комфорт (меньший уровень шума).
• Обходится без сложной выхлопной системы.
• Простота и дешевизна в изготовлении.
• Большая удельная мощность х1.6-1.8 (в расчете на 1 литр раб. объема)
• Отсутствие громоздких систем газораспределения и смазки.
• Отсутствие распределительного вала и блока клапанов.
Приготовление горючей смеси в карбюраторных двигателях происходит в специальном устройстве – карбюраторе, в котором осуществляется процесс смешивания топлива с потоком воздуха, за счет искусственной конвекции, создаваемой аэродинамическими силами потока воздуха, засасываемого двигателем.
В инжекторных двигателях процесс смесеобразования организован иначе. Топливо впрыскивается в воздушный поток, через специальные форсунки. Дозируется подача топлива электронным блоком управления, или (в более старых автомобилях) механической системой.
Первые инжекторные двигатели появились в 1997 году. Их внедрению способствовала корпорация OMC, которая выпустила двигатель, сконструированный с использованием технологии FICHT. Ключевым фактором этой технологии было использование специальных инжекторов, которые позволяли впрыскивать топливо сразу в камеру сгорания. Это революционное решение, в купе с использованием современного бортового компьютера, сделало возможным точное дозирование топлива, при перемещении поршня. В полость коленчатого вала впрыскивается чистое масло, без примесей топлива. Благодаря новой технологии конструкторам удалось изобрести двухтактный двигатель, который не уступал по экономичности карбюраторному четырехтактному двигателю, а также был компактным и легким.
Из-за новых стандартов на чистоту выхлопа, автомобильным производителям пришлось перейти от классических карбюраторных двигателей к инжекторным, а также установить современные нейтрализаторы выхлопных газов. Для функционирования катализатора необходим постоянный состав выхлопного газа, который поддерживается системой впрыска топлива. Обязательной составляющей катализатора является датчик содержания кислорода, благодаря которому отслеживается точное соотношение кислорода, недоокисленных продуктов сгорания топлива и оксидов азота, которые сможет нейтрализовать катализатор.
Если вы решили перейти с бензинового двигателя на газовое оборудование в своем автомобиле, то для этого необходимо приобрести все необходимые запчасти. Редуктор газовый автомобильный пропан, а также многое другое, по доступной цене можно приобрести на этом ресурсе.
Материалы: http://autohis.ru/benzodvig.php
3 ≫
-
В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.
Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.
Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).
Схема работы бензинового двигателя внутреннего сгорания:
Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.
Ниже более подробно расписан рабочий цикл бензинового двигателя:
Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.
Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, - вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.
Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.
Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.
Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.
Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой - 1,5-2 мм) и широкие (высотой - 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.
Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда - алюминиевыми.
Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.
Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.
В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве - карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.
В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.
Основными вспомогательными системами являются:
Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.
Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.
Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.
Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.
Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.
Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.
Материалы: http://prodv.com.ua/publ/benzinovyj_dvigatel_vnutrennego_sgoranija_princip_raboty/1-1-0-3408