Система турбонаддува - общая информация

1 ≫

Система турбонаддува - общая информация

Общая информация и принцип функционирования

1 — Датчик скорости движения автомобиля (VSS)

2 — Датчик положения дроссельной заслонки (TPS)

3 — Датчик температуры охлаждающей жидкости двигателя (ECT)

4 — Датчик положения коленчатого вала (CKP)

5 — Датчик расхода воздуха

6 — Клапан перепускания воздуха

7 — Электромагнитный клапан управления сбросом давления

8 — Диафрагма привода перепускного клапана

9 — Перепускной клапан сброса давления

11 — Промежуточный охладитель (Intercooler)

12 — Направление подачи воздуха при быстром закрывании дроссельной заслонки

13 — Водяные шланги

14 — Дроссельная заслонка

15 — Клапан переключения давления воздуха

16 — Насос промежуточного охладителя

17 — Электромотор привода вентилятора системы охлаждения

18 — Вентилятор системы охлаждения

19 — Радиатор промежуточного охладителя

20 — Радиатор системы охлаждения

21 — Датчик давления воздуха

22 — Блок управления (MPFI Turbo)

Система управления позволяет форсировать двигатель по мощности, что в существенной мере повышает эффективность его отдачи и, как следствие, улучшает маневренность автомобиля во всех рабочих диапазонах. В системе управления предусмотрена функция компенсации изменения барометрического давления при эксплуатации автомобиля в высокогорной местности.

2 — Вход воздуха

3 — Давление наддува

4 — Подача масла

5 — Отработавшие газы

6 — Сжатый воздух

7 — Подача охлаждающей жидкости

Компрессор оснащен собственной водяной рубашкой и перепускным клапаном сброса давления. Турбина изготовлена из термостойкой стали, корпус компрессора, - из алюминиевого сплава. Вал турбины удерживается в подшипниках плавающего типа.

Схема функционирования клапана сброса давления

2 — Клапан сброса давления

3 — Диафрагма привода перепускного клапана

Перепускной клапан пребывает в закрытом положении до тех пор, пока давление наддува остается ниже допустимого значения. При этом весь поток отработавших газов пропускается через турбину.

Как только давление на управляющей диафрагме переваливает за пределы допустимого значения, перепускной клапан открывается и часть отработавших газов сбрасывается в обход турбины непосредственно в систему выпуска. При этом разница давлений Р1 - Р2 (где Р1 - атмосферное давление; Р2 - давление во впускном трубопроводе) поддерживается постоянной.

Концепция управления давлением наддува

При эксплуатации автомобиля на большой высоте над уровнем моря, где имеет место уже заметное понижение атмосферного давления относительно нормального, система управления наддувом обеспечивает поддержку максимального абсолютного значения давления наддува.

Схема смазки турбокомпрессора

1 — Колесо турбины

2 — Отработавшие газы

4 — Улитка турбины

5 — Колесо компрессора

6 — Улитка компрессора

1 — Радиатор промежуточного охладителя

2 — Радиатор системы охлаждения

3 — Вход охлаждающей жидкости

5 — Выход воздуха

6 — Электромотор привода вентилятора

7 — Выход охлаждающей жидкости

8 — Насос охладителя

10 — Вход воздуха

11 — Электромотор привода насоса

12 — Датчик скорости движения автомобиля (VSS)

13 — Датчик температуры охлаждающей жидкости (ECT)

14 — Датчик положения дроссельной заслонки (TPS)

15 — Блок управления

Промежуточное охлаждение воздуха после выхода его из компрессора повышает эффективность функционирования системы турбонаддува, снижает вероятность возникновения детонации смеси и способствует сокращению расхода топлива.

4 — Охладитель (Intercooler)

6 — Радиатор охладителя

7 — Насос охладителя

Промежуточный охладитель (Intercooler) представляет собой водо-воздушный теплообменник с низким гидравлическим сопротивлением и высокой охлаждающей способностью.

1 — Выход воздуха

2 — Вход воздуха

3 — Вход охлаждающей жидкости

4 — Выход охлаждающей жидкости

Теплообменник промежуточного охладителя, состоящий из пяти отдельных блоков, выполнен из алюминиевого сплава и обеспечивает отвод избытка тепла от воздушного потока, температура которого поднимается в результате адиабатического сжатия в компрессоре.

1 — Радиатор охладителя

2 — Корпус дросселя

3 — Крышка системы охлаждения

5 — Насос охладителя

Радиатор промежуточного охладителя изготовлен из оребренных алюминиевых труб. Левый бачок радиатора разделен на две части, что позволяет более эффективно обеспечивать отвод тепла от охлаждающей жидкости. Для удаления из тракта воздушных пробок предусмотрена специальная вентиляционная пробка.

3 — Вход жидкости

Привод крыльчатки насоса промежуточного охладителя осуществляется от индивидуального электромотора.

1 — От компрессора

2 — К впускному трубопроводу

5 — На вход компрессора

Диагностика неисправностей системы турбонаддува

Причинами возникновения перечисленных ниже признаков могут являться также нарушение герметичности систем впуска воздуха или выпуска отработавших газов, повышение сопротивления выпускного тракта в результате деформации труб, отказ системы управления по устранению детонации, а также нарушение исправности функционирования системы управления впрыска.

b) Потеря мощности

c) Снижение приемистости;

d) Повышение расхода топлива.

f) Образование белого дыма на выходе системы выпуска отработавших газов.

Материалы: http://interquadro.24subaru.ru/Forester/6_15.htm

2 ≫

Интеркулер турбины

Промежуточный охладитель (интеркулер) медленно, но уверенно признается как неотъемлемая составная часть системы турбонаддува. Его использование должно рассматриваться не просто как добавление льда к нашему лакомству. Правильный промежуточный охладитель означает большее количество этого лакомства.

Общая схема системы турбонаддува с промежуточным охлаждением.

Промежуточный охладитель это радиатор или, используя более правильную терминологию, теплообменник, расположенный между турбонагнетателем и впускным коллектором. Основная его задача состоит в том, чтобы забрать ненужную теплоту из нагнетаемого воздуха, которую туда добавил турбонагнетатель в процессе сжатия. Очевидно, что качество промежуточного охладителя должно оцениваться его способностью по переносу этой теплоты. К сожалению, это только верхушка айсберга, поскольку простое по сути добавление промежуточного охладителя создает множество разнообразных проблем. Извлечение большей пользы от установки промежуточного охладителя при уменьшении проблем, которые он может принести — техническая задача, которая должна быть решена прежде, чем можно будет создавать систему турбонаддува с промежуточным охлаждением воздуха.

Будет ошибкой думать, что «любой интеркулер лучше, чем отсутствие интеркулера «.

Отвод теплоты от нагнетаемого воздуха имеет два огромных достоинства. Во-первых, понижение температуры увеличивает плотность воздуха. Увеличение плотности пропорционально изменению температуры (измеренное по абсолютной шкале). Более плотный воздушный заряд производит больше энергии. Вторым, но не менее важным эффектом является потрясающий выигрыш в процессе сгорания, вызванный уменьшением вероятности возникновения детонации вследствие пониженных температур воздушного заряда. Эти два достоинства являются причиной того, что правильно выбранный промежуточный охладитель может увеличить мощность и/или запас прочности двигателя с турбонагнетателем. Чтобы уточнить, какие испытания проводятся при оценке системы промежуточного охлаждения, обратитесь, пожалуйста, к главе «Испытания системы».

Оптимальная конструкция интеркулера

Факторов, определяющих оптимальность конструкции при создании промежуточного охладителя много, и они различны по своей природе. Эти факторы определяют направления приложения инженерной мысли для постройки промежуточного охладителя, который максимизирует отвод тепла и минимизирует потери давления наддува и любые негативные проявления инерционности.

Жидкостное охлаждение на Toyota Celica

Площадь теплопередачи.

Площадь теплопередачи — сумма площадей всех пластин и оболочек в ядре теплообменника, которые отвечают за передачу теплоты из системы. Легко заметить, что чем больше площадь теплопередачи, тем более эффективен промежуточный охладитель. Не ждите, однако, что вдвое большая площадь удваивает эффективность. Увеличение ядра на 10% даст вам уменьшение приблизительно на 10% «неполноты эффективности». То есть, увеличение на каждые 10% станет все менее и менее весомым. Например, если существующее ядро промежуточного охладителя имеет эффективность 70%, увеличение ядра на 10% должно дать приблизительно 10% от отсутствующих 30%, другими словами, эффективность увеличенного ядра составит 73%.

Два наиболее популярных варианта ядра промежуточного охладителя — «пластинчатый» (сверху) и «трубчатый» (снизу). Пластинчатый промежуточный охладитель обеспечивает меньшее сопротивления потоку, в то время как трубчатый промежуточный охладитель имеет тенденцию быть более эффективным с точки зрения теплообмена. » Трубы » обычно делаются 1/4 11 толщиной и 1 1/2-3 » шириной.

Внутреннее проходное сечение.

Конструкция с прямым потоком воздуха через ядро плоха с точки зрения эффективности. Чем более извилист путь воздуха сквозь ядро, тем более вероятно, что он отдаст свою теплоту, а это и есть наша главная задача. Обратной стороной медали является то, что плохая обтекаемость внутри ядра может создавать большие потери давления наддува. Для компенсации плохой обтекаемости внутреннее проходное сечение должно быть сделано достаточно большим, чтобы замедлить скорость движения воздуха внутри ядра промежуточного охладителя и свести потери давления к приемлемому уровню.

Сейчас практически все after-market производители предлагают комплекты для установки интеркулеров. Комплект интеркулера воздух-воздух от Greddy.

Наиболее важный аспект конструкции промежуточного охладителя — низкие внутренние потери давления.

Внутренний объем.

Сначала весь внутренний объем системы промежуточного охлаждения должен наполниться воздухом под давлением, и лишь тогда какое-то давление будет создано во впускном коллекторе. Хотя этот объем вносит не самый существенный вклад в задержку (лаг), однако и этот аспект конструкции неплохо бы оптимизировать в процессе создания хорошей системы промежуточного охлаждения. Весьма полезно в процессе конструирования представлять себе объем системы и постоянно пытаться убрать излишек. Чтобы количественно представить взаимосвязь между объемом и задержкой, предлагается разделить внутренний объем на расход воздуха через систему на определенных оборотах двигателя и умножить результат на 2. (Коэффициент 2 — результат приблизительного удвоения расхода воздуха через систему при переходе от простой езды к работе двигателя с наддувом). Приблизительное время задержки в этом случае равно

Пример: Пусть объем системы впуска 8,2 литра. Расход воздуха — 8,415 м3/мин на режиме приблизительно 5000 оборотов в минуту. Тогда

Совершенно точно можно сказать, что приемистость будет плохой, если двигатель оборудован датчиком расхода воздуха, размещенным слишком далеко от корпуса дроссельной заслонки. Открытие дроссельной заслонки формирует импульс низкого давления, перемещающийся к датчику расхода воздуха. Как правило, этот импульс должен пройти расстояние от корпуса дроссельной заслонки до промежуточного охладителя, сквозь промежуточный охладитель, назад к турбонагнетателю, потом на расходомер, чтобы тот зарегистрировал изменение. Только когда расходомер получит этот импульс, отношение воздух/топливо может измениться топливным контроллером с учетом новых условий нагрузки на двигатель. Надо заметить, что в этой схеме возможны усложнения, связанные с наличием датчика положения дроссельной заслонки, которым может быть оборудован двигатель. И всё-таки, как правило, чем дальше дроссельная заслонка отдатчика расхода воздуха, тем хуже приемистость. Таким образом, длине этой траектории необходимо также уделить некоторое внимание на этапе проектирования.

Серьезный подход к промежуточному охлаждению.

Когда двигатель оборудован системой впрыска, оснащённой датчиком давления во впускном коллекторе, и при этом не используется датчик расхода воздуха, либо же речь идёт о двигателе с карбюратором, установленным после турбонагнетателя, длина впускного тракта может быть достаточно длинной без отрицательных последствий, поскольку приемистость при этом не пострадает.

Таким образом, основная задача при проектировании системы промежуточного охлаждения состоит в том, чтобы максимизировать способность системы по отводу теплоты от сжатого воздуха и при этом снизить такие неблагоприятные воздействия, как потеря давления наддува, потеря приемистости или любая задержка при повышении давления наддува.

Расчёт параметров промежуточного охладителя

Изменение плотности впускного воздуха может быть вычислено относительно изменения температуры, вызванного промежуточным охладителем. Например, предположите, что турбонагнетатель имеет компрессор, повышающий температуру на 90°С выше температуры атмосферного воздуха, то есть до 383° абсолютной температуры при нормальной температуре 20°С (ноль градусов Цельсия соответствует 273° по абсолютной шкале температуры; прибавьте 20°С, получим 293°, 90° С выше этой температуры — 383° абсолютной температуры). Если мы используем в системе промежуточный охладитель с эффективностью 60 %, мы понизили бы температуру воздуха на 0,6 х 90″С = 54()С, уменьшив повышение температуры до 36°С в отличие от первоначальных 90°С или абсолютную температуру 293° + 36° = 329°. Изменение плотности в этом случае может быть вычислено из отношения первоначальной абсолютной температуры к конечной абсолютной температуре:

Вычисление эффективности промежуточного охладителя.

Поэтому, этот промежуточный охладитель даст увеличение плотности воздушного заряда приблизительно 16 %. Это означает, что на 16 % большее количество воздушных молекул окажется в камере сгорания, нежели при отсутствии интеркулера. При неизменных прочих условиях можно было бы ожидать пропорциональное увеличение мощности. Этого, к сожалению, не происходит вследствие потерь давления, вызванных аэродинамическим сопротивлением внутри промежуточного охладителя. Соответствующее уменьшение мощности, вызванное потерей давления, может быть оценено посредством вычисления отношения абсолютного давления с использованием промежуточного охладителя к давлению без промежуточного охладителя и вычитанием результата из 100%.

Пример: Если из 0,68 бар, созданного компрессором давления, 0,14 потеряны из-за сопротивления промежуточного охладителя:

Этот расчёт показывает, что потери при прохождении воздушного потока сквозь промежуточный охладитель составляют 8 %. Мысль о том, что потерянное давление наддува может легко быть восстановлено путем регулирования вестгейта, является не совсем правильной, несмотря на всю свою притягательность. Конечно, если давление наддува будет увеличено, мощность увеличится, но последствием этого будет то, что давление на входе в турбину увеличится, поскольку Вы попытаетесь заставить турбину работать при большей нагрузке. Большее давление на входе в турбину создает большее обратное давление, которое увеличивает количество теплоты в камере сгорания, которая понижает плотность воздуха на впуске и так далее, и так далее. Таким образом, можно видеть, что идея восстановления потерянной, из-за наличия интеркулера, мощности, путем повышения давления наддува — это, в некотором роде, попытка ухватить собственный хвост. Слишком бесполезной затеей будет попытка разработать и изготовить мифический промежуточный охладитель с нулевыми потерями.

Промежуточные охладители воздух /воздух, установленный на GTR35.

Вычисление КПД промежуточного охладителя.

Идея состоит в том, чтобы сравнить увеличение температуры воздуха, вызванного турбонагнетателем, с понижением температуры при прохождении воздуха через промежуточный охладитель. Увеличение температуры после компрессора — это разность температуры воздуха на выходе из компрессора (Тсо) и температуры окружающей среды (Тa).

Увеличение температуры = Тсо— Тa;

Количество тепла, отведенного промежуточным охладителем характеризуется разностью температуры воздуха, выходящего из компрессора (Тсо) и температуры воздуха, выходящего из промежуточного охладителя (Т).

Уменьшение температуры = ТсоТ;

Эффективность промежуточного охладителя (Еj) определяется как отношение понижения температуры к увеличению температуры:

Выбор типа промежуточного охладителя

В настоящее время имеются два типа промежуточных охладителей, подходящих для использования: воздух/ воздух и воздух/жидкость. Каждый имеет свои особенности. Решение, о том, какой из них является наиболее подходящим для конкретного приложения, должно основываться на достоинствах и недостатках каждого из типов применительно к конфигурации транспортного средства.

Агрегат воздух/воздух будет проще, имеет большую тепловую эффективность на высоких скоростях, большую надежность, более простое обслуживание, и, наконец, низкую стоимость. Агрегат воздух/жидкость будет иметь лучший термический к.п.д. на низких скоростях, обеспечивает лучшую приемистость в случаях, когда система впрыска оборудована измерителем массового расхода, меньшую потерю давления и снижает вероятность работы компрессора на неустойчивых режимах. Габаритные ограничения или сложности прокладки воздуховодов могут диктовать невозможность использования агрегатов воздух/воздух. В подобных случаях выбор осуществляется сам собой.

Ядро промежуточного охладителя трубчатого и «plate & bar» вида обеспечивает хороший теплообмен за счет развитых турбулизаторов, но меньшую внутреннюю площадь проходного сечения.

Промежуточный охладитель воздух/воздух

При конфигурировании промежуточного охладителя воздух/воздух необходимо в равной степени уделять адекватное внимание самым разнообразным факторам. Хорошо сбалансированная и оптимизированная конструкция может получиться только вследствие кропотливой работы над деталями, пока все нюансы конструкции не будут соответствовать техническим требованиям, перечисленным в следующих параграфах.

Внутреннее проходное сечение.

В первую очередь потери давления при прохождении воздуха сквозь промежуточный охладитель зависят от внутреннего проходного сечения ядра теплообменника. Не существует никакой волшебной формулы для вычисления правильного проходного сечения при заданном расходе воздуха, но опыт показал, что следование рекомендациям, отражённым на рисунке, приносит удовлетворительные результаты. Если бы не завихрители, которые будто палка о двух концах, мы могли обойтись намного меньшими проходными сечениями, но тогда теплопередача была бы значительно меньшей. Задача завихрителей состоит в том, чтобы внутри ядра не существовало никакого ламинарного течения. Если эта задача выполнена, каждая молекула впускного воздуха получит шанс достигнуть стенки ядра и передать ей часть своей энергии в виде теплоты. При частом расположении завихрителей теплообмен лучше, но и потери давления выше. Если имеется пространство для размещения большого ядра, вполне можно выбрать ядро с частыми завихрителями и найти компромисс между высоким сопротивлением завихрителей и большим внутренним проходным сечением. В противном случае: там, где пространство строго ограничено, должно быть выбрано ядро с низкой плотностью завихрителей.

Компоненты ядра промежуточного охладителя. Воздух из турбонагнетателя подается в каналы для нагнетаемого воздуха. Сторона окружающего воздуха размещается так, чтобы набегающий воздух охлаждал ядро. Крайние пластины, паянные к внешней поверхности, обеспечивают зазор и жесткость. Завихрители способствуют передаче тепла от труб к разделительным пластинам и оттуда к окружающему воздуху сквозь каналы охлаждающего воздуха.

Выбор размера ядра.

Как только внутреннее проходное сечение будет рассчитано, могут быть определены габаритные размеры ядра и его форма. У большинства ядер воздух может пройти через примерно 45% площади стороны для нагнетаемого воздуха. Чтобы найти заданную площадь стороны для нагнетаемого воздуха, разделите внутреннее проходное сечение на это число 45 %. Ядра обычно имеют толщину 50 и 75 мм, длину (высоту) каналов 150, 200, 250, и 300 мм, и ширину 225, 450, и 600 мм (которая может быть уменьшена до конкретного точного размера). Существуют ядра с более длинными каналами, но они имеют свойство ухудшать внутреннее проходное сечениею.

Пусть расход воздуха составляет 14 м 3 Рисунок показывает, что типичный промежуточный охладитель требовал бы внутреннего проходного сечения приблизительно 170 см 2 .

Поэтому, для ядра толщиной 75 мм. — Ширина =170 см 2 /7,5см = 22,7см

для ядра толщиной 50мм. — Ширина =170 см 2 /5см = 34см

Если имеется пространство для ядра толщиной 50 мм, эффективность окажется немного больше, поскольку увеличится ширина и, следовательно, возрастёт лобовая площадь. Хотя более тонкое ядро является лучшим выбором, тем не менее, толстое ядро также полностью работоспособно. Длина воздушных каналов каналов (высота), умноженная на ширину ядра — фактическая лобовая площадь.

Материалы: http://remont-turbiny.ru/%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D0%BA%D1%83%D0%BB%D0%B5%D1%80-%D1%82%D1%83%D1%80%D0%B1%D0%B8%D0%BD%D1%8B/

3 ≫

Промежуточный охладитель (интеркулер) медленно, но уверенно признается как неотъемлемая составная часть системы турбонаддува. Его использование должно рассматриваться не просто как добавление льда к нашему лакомству. Правильный промежуточный охладитель означает большее количество этого лакомства.

Общая схема системы турбонаддува с промежуточным охлаждением.

Промежуточный охладитель это радиатор или, используя более правильную терминологию, теплообменник, расположенный между турбонагнетателем и впускным коллектором. Основная его задача состоит в том, чтобы забрать ненужную теплоту из нагнетаемого воздуха, которую туда добавил турбонагнетатель в процессе сжатия. Очевидно, что качество промежуточного охладителя должно оцениваться его способностью по переносу этой теплоты. К сожалению, это только верхушка айсберга, поскольку простое по сути добавление промежуточного охладителя создает множество разнообразных проблем. Извлечение большей пользы от установки промежуточного охладителя при уменьшении проблем, которые он может принести - техническая задача, которая должна быть решена прежде, чем можно будет создавать систему турбонаддува с промежуточным охлаждением воздуха.

Будет ошибкой думать, что "любой интеркулер лучше, чем отсутствие интеркулера ".

Отвод теплоты от нагнетаемого воздуха имеет два огромных достоинства. Во-первых, понижение температуры увеличивает плотность воздуха. Увеличение плотности пропорционально изменению температуры (измеренное по абсолютной шкале). Более плотный воздушный заряд производит больше энергии. Вторым, но не менее важным эффектом является потрясающий выигрыш в процессе сгорания, вызванный уменьшением вероятности возникновения детонации вследствие пониженных температур воздушного заряда. Эти два достоинства являются причиной того, что правильно выбранный промежуточный охладитель может увеличить мощность и/или запас прочности двигателя с турбонагнетателем. Чтобы уточнить, какие испытания проводятся при оценке системы промежуточного охлаждения, обратитесь, пожалуйста, к главе "Испытания системы".

Оптимальная конструкция интеркулера

Факторов, определяющих оптимальность конструкции при создании промежуточного охладителя много, и они различны по своей природе. Эти факторы определяют направления приложения инженерной мысли для постройки промежуточного охладителя, который максимизирует отвод тепла и минимизирует потери давления наддува и любые негативные проявления инерционности.

Жидкостное охлаждение на Toyota Celica

Площадь теплопередачи.

Площадь теплопередачи - сумма площадей всех пластин и оболочек в ядре теплообменника, которые отвечают за передачу теплоты из системы. Легко заметить, что чем больше площадь теплопередачи, тем более эффективен промежуточный охладитель. Не ждите, однако, что вдвое большая площадь удваивает эффективность. Увеличение ядра на 10% даст вам уменьшение приблизительно на 10% «неполноты эффективности». То есть, увеличение на каждые 10% станет все менее и менее весомым. Например, если существующее ядро промежуточного охладителя имеет эффективность 70%, увеличение ядра на 10% должно дать приблизительно 10% от отсутствующих 30%, другими словами, эффективность увеличенного ядра составит 73%.

Два наиболее популярных варианта ядра промежуточного охладителя - "пластинчатый" (сверху) и «трубчатый» (снизу). Пластинчатый промежуточный охладителъ обеспечивает меньшее сопротивления потоку, в то время как трубчатыйнромежуточный охладитель имеет тенденцию быть более эффективным с точки зрения теплообмена. " Трубы " обычно делаются 1/4 11 толщиной и 1 1/2-3 " шириной.

Внутреннее проходное сечение.

Конструкция с прямым потоком воздуха через ядро плоха с точки зрения эффективности. Чем более извилист путь воздуха сквозь ядро, тем более вероятно, что он отдаст свою теплоту, а это и есть наша главная задача. Обратной стороной медали является то, что плохая обтекаемость внутри ядра может создавать большие потери давления наддува. Для компенсации плохой обтекаемости внутреннее проходное сечение должно быть сделано достаточно большим, чтобы замедлить скорость движения воздуха внутри ядра промежуточного охладителя и свести потери давления к приемлемому уровню.

Сейчас практически все after-market производители предлагают комплекты для установки интеркулеров. Комплект интеркулера воздух-воздух от Greddy.

Наиболее важный аспект конструкции промежуточного охладителя - низкие внутренние потери давления.

Внутренний объем.

Сначала весь внутренний объем системы промежуточного охлаждения должен наполниться воздухом под давлением, и лишь тогда какое-то давление будет создано во впускном коллекторе. Хотя этот объем вносит не самый существенный вклад в задержку (лаг), однако и этот аспект конструкции неплохо бы оптимизировать в процессе создания хорошей системы промежуточного охлаждения. Весьма полезно в процессе конструирования представлять себе объем системы и постоянно пытаться убрать излишек. Чтобы количественно представить взаимосвязь между объемом и задержкой, предлагается разделить внутренний объем на расход воздуха через систему на определенных оборотах двигателя и умножить результат на 2. (Коэффициент 2 - результат приблизительного удвоения расхода воздуха через систему при переходе от простой езды к работе двигателя с наддувом). Приблизительное время задержки в этом случае равно

Пример: Пусть объем системы впуска 8,2 литра. Расход воздуха - 8,415 м3/мин на режиме приблизительно 5000 оборотов в минуту. Тогда

Совершенно точно можно сказать, что приемистость будет плохой, если двигатель оборудован датчиком расхода воздуха, размещенным слишком далеко от корпуса дроссельной заслонки. Открытие дроссельной заслонки формирует импульс низкого давления, перемещающийся к датчику расхода воздуха. Как правило, этот импульс должен пройти расстояние от корпуса дроссельной заслонки до промежуточного охладителя, сквозь промежуточный охладитель, назад к турбонагнетателю, потом на расходомер, чтобы тот зарегистрировал изменение. Только когда расходомер получит этот импульс, отношение воздух/топливо может измениться топливным контроллером с учетом новых условий нагрузки на двигатель. Надо заметить, что в этой схеме возможны усложнения, связанные с наличием датчика положения дроссельной заслонки, которым может быть оборудован двигатель. И всё-таки, как правило, чем дальше дроссельная заслонка отдатчика расхода воздуха, тем хуже приемистость. Таким образом, длине этой траектории необходимо также уделить некоторое внимание на этапе проектирования.

Серьезный подход к промежуточному охлаждению.

Когда двигатель оборудован системой впрыска, оснащённой датчиком давления во впускном коллекторе, и при этом не используется датчик расхода воздуха, либо же речь идёт о двигателе с карбюратором, установленным после турбонагнетателя, длина впускного тракта может быть достаточно длинной без отрицательных последствий, поскольку приемистость при этом не пострадает.

Таким образом, основная задача при проектировании системы промежуточного охлаждения состоит в том, чтобы максимизировать способность системы по отводу теплоты от сжатого воздуха и при этом снизить такие неблагоприятные воздействия, как потеря давления наддува, потеря приемистости или любая задержка при повышении давления наддува.

Расчёт параметров промежуточного охладителя

Изменение плотности впускного воздуха может быть вычислено относительно изменения температуры, вызванного промежуточным охладителем. Например, предположите, что турбонагнетатель имеет компрессор, повышающий температуру на 90°С выше температуры атмосферного воздуха, то есть до 383° абсолютной температуры при нормальной температуре 20°С (нуль градусов Цельсия соответствует 273° по абсолютной шкале температуры; прибавьте 20°С, получим 293°, 90° С выше этой температуры - 383° абсолютной температуры). Если мы используем в системе промежуточный охладитель с эффективностью 60 %, мы понизили бы температуру воздуха на 0,6 х 90"С = 54()С, уменьшив повышение температуры до 36°С в отличие от первоначальных 90°С или абсолютную температуру 293° + 36° = 329°. Изменение плотности в этом случае может быть вычислено из отношения первоначальной абсолютной температуры к конечной абсолютной температуре:

Вычисление эффективности промежуточного охладителя.

Поэтому, этот промежуточный охладитель даст увеличение плотности воздушного заряда приблизительно 16 %. Это означает, что на 16 % большее количество воздушных молекул окажется в камере сгорания, нежели при отсутствии интеркулера. При неизменных прочих условиях можно было бы ожидать пропорциональное увеличение мощности. Этого, к сожалению, не происходит вследствие потерь давления, вызванных аэродинамическим сопротивлением внутри промежуточного охладителя. Соответствующее уменьшение мощности, вызванное потерей давления, может быть оценено посредством вычисления отношения абсолютного давления с использованием промежуточного охладителя к давлению без промежуточного охладителя и вычитанием результата из 100%.

Пример: Если из 0,68 бар, созданного компрессором давления, 0,14 потеряны из-за сопротивления промежуточного охладителя:

Этот расчёт показывает, что потери при прохождении воздушного потока сквозь промежуточный охладитель составляют 8 %. Мысль о том, что потерянное давление наддува может легко быть восстановлено путем регулирования вестгейта, является не совсем правильной, несмотря на всю свою притягательность. Конечно, если давление наддува будет увеличено, мощность увеличится, но последствием этого будет то, что давление на входе в турбину увеличится, поскольку Вы попытаетесь заставить турбину работать при большей нагрузке. Большее давление на входе в турбину создает большее обратное давление, которое увеличивает количество теплоты в камере сгорания, которая понижает плотность воздуха на впуске и так далее, и так далее. Таким образом, можно видеть, что идея восстановления потерянной, из-за наличия интеркулера, мощности, путем повышения давления наддува - это, в некотором роде, попытка ухватить собственный хвост. Слишком бесполезной затеей будет попытка разработать и изготовить мифический промежуточный охладитель с нулевыми потерями.

Промежуточные охладители воздух /воздух, установленный на GTR35.

Вычисление КПД промежуточного охладителя.

Идея состоит в том, чтобы сравнить увеличение температуры воздуха, вызванного турбонагнетателем, с понижением температуры при прохождении воздуха через промежуточный охладитель. Увеличение температуры после компрессора - это разность температуры воздуха на выходе из компрессора ( Тсо ) и температуры окружающей среды ( Тa ).

Увеличение температуры = Тсо- Т a ;

Количество тепла, отведенного промежуточным охладителем характеризуется разностью температуры воздуха, выходящего из компрессора (Тсо) и температуры воздуха, выходящего из промежуточного охладителя (Т).

Уменьшение температуры = Тсо- Т;

Эффективность промежуточного охладителя ( Еj ) определяется как отношение понижения температуры к увеличению температуры:

Выбор типа промежуточного охладителя

В настоящее время имеются два типа промежуточных охладителей, подходящих для использования: воздух/ воздух и воздух/жидкость. Каждый имеет свои особенности. Решение, о том, какой из них является наиболее подходящим для конкретного приложения, должно основываться на достоинствах и недостатках каждого из типов применительно к конфигурации транспортного средства.

Агрегат воздух/воздух будет проще, имеет большую тепловую эффективность на высоких скоростях, большую надежность, более простое обслуживание, и, наконец, низкую стоимость. Агрегат воздух/жидкость будет иметь лучший термический к.п.д. на низких скоростях, обеспечивает лучшую приемистость в случаях, когда система впрыска оборудована измерителем массового расхода, меньшую потерю давления и снижает вероятность работы компрессора на неустойчивых режимах. Габаритные ограничения или сложности прокладки воздуховодов могут диктовать невозможность использования агрегатов воздух/воздух. В подобных случаях выбор осуществляется сам собой.

Ядро промежуточного охладителя трубчатого и "plate & bar" вида обеспечивает хороший теплообмен за счет развитых турбулизаторов, но меньшую внутреннюю площадь проходного сечения.

Промежуточный охладитель воздух/воздух

При конфигурировании промежуточного охладителя воздух/воздух необходимо в равной степени уделять адекватное внимание самым разнообразным факторам. Хорошо сбалансированная и оптимизированная конструкция может получиться только вследствие кропотливой работы над деталями, пока все нюансы конструкции не будут соответствовать техническим требованиям, перечисленным в следующих параграфах.

Внутреннее проходное сечение.

В первую очередь потери давления при прохождении воздуха сквозь промежуточный охладитель зависят от внутреннего проходного сечения ядра теплообменника. Не существует никакой волшебной формулы для вычисления правильного проходного сечения при заданном расходе воздуха, но опыт показал, что следование рекомендациям, отражённым на рисунке, приносит удовлетворительные результаты. Если бы не завихрители, которые будто палка о двух концах, мы могли обойтись намного меньшими проходными сечениями, но тогда теплопередача была бы значительно меньшей. Задача завихрителей состоит в том, чтобы внутри ядра не существовало никакого ламинарного течения. Если эта задача выполнена, каждая молекула впускного воздуха получит шанс достигнуть стенки ядра и передать ей часть своей энергии в виде теплоты. При частом расположении завихрителей теплообмен лучше, но и потери давления выше. Если имеется пространство для размещения большого ядра, вполне можно выбрать ядро с частыми завихрителями и найти компромисс между высоким сопротивлением завихрителей и большим внутренним проходным сечением. В противном случае: там, где пространство строго ограничено, должно быть выбрано ядро с низкой плотностью завихрителей.

Компоненты ядра промежуточного охладителя. Воздух из турбонагнетателя подается в каналы для нагнетаемого воздуха. Сторона окружающего воздуха размещается так, чтобы набегающий воздух охлаждал ядро. Крайние пластины, паянные к внешней поверхности, обеспечивают зазор и жесткость. Завихрители способствуют передаче тепла от труб к разделительным пластинам и оттуда к окружающему воздуху сквозь каналы охлаждающего воздуха.

Измерение проходного сечен и я ядра.

Выбор размера ядра.

Как только внутреннее проходное сечение будет рассчитано, могут быть определены габаритные размеры ядра и его форма. У большинства ядер воздух может пройти через примерно 45% площади стороны для нагнетаемого воздуха. Чтобы найти заданную площадь стороны для нагнетаемого воздуха, разделите внутреннее проходное сечение на это число 45 %. Ядра обычно имеют толщину 50 и 75 мм, длину (высоту) каналов 150, 200, 250, и 300 мм, и ширину 225, 450, и 600 мм (которая может быть уменьшена до конкретного точного размера). Существуют ядра с более длинными каналами, но они имеют свойство ухудшать внутреннее проходное сечениею.

Пусть расход воздуха составляет 14 м 3 Рисунок показывает, что типичный промежуточный охладитель требовал бы внутреннего проходного сечения приблизительно 170 см 2 .

Поэтому, для ядра толщиной 75 мм. - Ширина = 170 см 2 / 7,5см = 22,7см

для ядра толщиной 50мм. - Ширина = 170 см 2 / 5см = 34см

Если имеется пространство для ядра толщиной 50 мм, эффективность окажется немного больше, поскольку увеличится ширина и, следовательно, возрастёт лобовая площадь. Хотя более тонкое ядро является лучшим выбором, тем не менее, толстое ядро также полностью работоспособно. Длина воздушных каналов каналов (высота), умноженная на ширину ядра - фактическая лобовая площадь.

Оценка требуемого внутреннего проходного сечения ядра.

Фронтальная площадь

Фронтальная площадь интеркулера влияет на количество окружающего воздуха, проходящего через ядро и охлаждающего надувочный воздух. Чем больше количество окружающего воздуха проходит через ядро, тем выше охлаждающие возможности интеркулера. Расход воздуха определяется как произведение скорости движения и фронтальной площади ядра.

Таким образом, видно, что из двух ядер с фактически равным внутренним проходным сечением, ядро с большей лобовой площадью будет лучше.

Оценка количества охлаждающего воздуха, проходящего через п ромежуточный охладитель

Коэффициент лобового сопротивления интеркулера

Коэффициент лобового сопротивления определяет легкость, с которой окружающий воздух проходит через ядро. Конечно, чем легче воздуху проходить сквозь ядро, тем больше будет расход окружающего воздуха и, следовательно, выше охлаждающий эффект. Например, если трубы, по которым проходит впускной воздух, в ядре имеют скругленные края, расход поступающего окружающего воздуха, вероятно, будет несколько большим. В большинстве выпускаемых интеркуллеров, коэффициент лобового сопротивления для окружающего воздуха - упущенная деталь конструкции.

Поток окружающего воздуха сквозь ядро пропорционален коэффицценту лобового сопротивления ядра.

Экструдированное ядро с закругленными краями обеспечит прохождение большего колличества охлаждающего воздуха.

Воздухозаборники

Форма воздухозаборников также определяет количество проходящего через интеркулер воздуха. Они заставляют молекулы воздуха проходить сквозь ядро. Не недооценивайте способность воздухозаборников улучшить эффективность промежуточного охладителя. Можно предложить, что при хорошем подходе можно достичь увеличения эффективности на 20 %. При изготовлении воздухозаборников стоит приложить дополнительные усилия, чтобы быть уверенным, что молекулы воздуха не имеют никакого другого пути, кроме как через ядро интеркулера. То есть герметизируйте все ребра, углы, и соединения.

Минимальная площадь входного канала не должна быть меньше одной четверти площади ядра.

Правильная система подвода воздуха направит большее количество охлаждающего воздуха сквозь промежуточный охладитель

Нет необходимости в том, чтобы входной канал был столь же большим как лобовая площадь ядра интеркулера. Практическое правило состоит в том, чтобы входной канал был по крайней мере размером в четвертую часть площади ядра. Это довольно странное правило вызвано тем фактом, что меньше чем четверть количества воздуха прошла бы через ядро без влияния трубок интеркуллера.

Толщина Ядра

Выбор толщины ядра промежуточного охладителя немного похож на жонглирование. Это вызвано тем фактом, что вторая половина любого ядра делает только четвертую часть работы по охлаждению. Добавление толщины ядра действительно улучшит эффективность, но увеличение будет все меньше и меньше. Другой отрицательный эффект, играющий роль, при увеличении толщины: увеличивающийся коэффициент лобового сопротивления интеркулера. Разумный способ установки ядра, когда лобовая площадь недостаточна и имеется избыточная глубина - интеркулер с разделенным ядром, обсуждаемый позже.

При выборе промежуточного охладителя, расценивайте интеркулер с толстым ядром как необдуманное решение.

Увеличение толщины ядра не увеличивает пропорционально возможности теплопередачи. Каждое следующее увеличение толщины ядра получит более горячий охлаждающий воздух.

Направление потока в ядре интеркулера

Когда имеется достаточно пространства для размещения большого интеркулера необходимо определить ориентацию ядра интеркулера. Если какие-либо причины не диктуют особенных требований, ядро всегда должно быть ориентировано для обеспечения самого большого возможного внутреннего проходного сечения. Направление потока не так важно. Например, интеркулеры на рисунке ниже занимают одинаковое пространство, но агрегат с вертикальным потоком имеет большую внутреннюю площадь и, следовательно, дает создает меньшее сопротивление потоку воздуха.

Верхнее и нижнее ядра имеют одинаковую особую площадь, площадь теплопередачи, и эффективность, но нижнее ядро, имеет намного большое внутреннее проходное сечение, из-за большего числу каналов для воздуха и, поэтому, более низкие потери давления.

Конструкция концевых резурвуаров промежуточного охладителя

Несколько деталей в проекте концевых резервуаров, присоединяемым к ядру интеркулера, могут улучшить термический к.п.д. и уменьшить потери давления. Это конечно не лучшая идея думать, что все молекулы воздуха легко и просто найдут свой путь «в» и «из» промежуточного охладителя. Думайте о них как о пасущихся овцах. Дайте им направление и сделайте перемещение легким для них.

Правильное внутреннее экранирование может обеспечишь рвномерное распределение воздушного потока внутри ядра и, таким образом, больший отвод тепла. Добавьте перегородку, направляющую одну половин впускного воздуха в одну половину ядра, а оставшуюся часть во вторую половину ядра.

Конструкция входного резервуара

Совершенно ясно, что термический КПД увеличится, если мы можем получить равномерное распределение воздушного потока сквозь трубы ядра. Необходимые усилия для выполнения этого могут быть сделаны путем установки соответствующих перегородок во входном резервуаре.

Положению входа во входной резервуар необходимо уделить внимание в нескольких областях. Всегда помните о требованиях равномерного распределения воздуха и легком входе потока в резервуар.

Конструкция выходного резервуара

После того, как работа по распределению сделана во входном резервуаре, теперь необходимо в выходном резервуаре собраться все молекулы и направить их в двигатель. При этом нужно уделить внимание, как спрямлению потока, так и к сведению потерь давления к минимуму. Заострите внимание на направлении выхода, и не заставляйте поток внезапно менять направление.

Удачные и не очень варианты выходного резервуара интеркулера.

Размеры и форма труб

Вероятно есть магическая скорость, которую не должна превышать скорость воздушного потока в трубе, из-за быстро увеличивающегося сопротивления и последующей потери давления. Значение этой критической скорости около 0,4 М или приблизительно 140 м/с, поскольку после достижения этой скорости сопротивление, а за ним и потери давления, значительно увеличиваются. Можно легко выбрать нужный диаметр трубы, вычислив максимальный расход воздуха и раз делив его на площадь сечения трубы. Приближенное значение максимального расхода воздуха можно узнать, умножив желаемую мощность в л.с. на 0,05.

Пример: Допустим максимальный расход воздуха равен приблизительно 8,415 м'/мин, и диаметр воздуховода = 50 мм. Тогда

Скорость звука - приблизительно 340 м/с. Поэтому

Таким образом, трубы диаметром 50 мм будет достаточно для подачи 8,5 м 3 /мин без значительного возрастания сопротивления. Не поддайтесь искушению, чтобы использовать трубы большего диаметра, чем необходимо, так как в гладких трубах с плавными изгибами обеспечивается небольшое сопротивление. Большие трубы только увеличат объем системы промежуточного охлаждения, и поэтому не стоит делать этого.

Толстая труба не обязателъно лучше, чем тонкая труба.

Изгибы и изменения сечения

Любой изгиб трубы или внезапное изменение поперечного сечения должны рассматриваться как потенциальные места потери расхода или источники увеличенного сопротивления. Необходимо заметить, что каждый раз при повороте потока воздуха на 90° происходит потеря 1 % расхода. Три 30” изгиба составят в целом 90°. Всегда используйте самый большой возможный радиус для любого изменения направления.

Конечно изгиб 90° с малым радиусом будет давать большие потери, чем изгиб с большим радиусом. Изменение от одного размера трубы к другому, часто необходимо для подсоединения к корпусу дроссельной заслонки, выходу из турбонагнетателя, входу и выходу из промежуточного охладителя. Эти изменения сечения нарушают плавность потока и создают потери. Плавные изменения сечения лучше всего могут быть выполнены в виде конических сегментов. Нужно следовать практическому правилу для определения угла конуса - одно изменение диаметра на длине в четыре диаметра.

Шланги и соединения

Все шланги и соединения являются местами потенциальных неисправностей. В начале проектирования системы турбонаддува рассматривайте все шланги и соединения как слабые места системы впуска. Неисправность соединения шлангов конечно означает потерю давления наддува. Однако, в случае если система управления двигателем использует датчик массового расхода воздуха, двигатель не будет работать должным образом. Когда шланг поврежден, воздух может поступать двигатель минуя расходомер, и поэтому датчик массового расхода воздуха будет вырабатывать сигнал, не соответствующий реальному расходу воздуха. Без правильного сигнала, двигатель будет работать плохо или вообще не будет работать. Проблема с соединениями шлангов и трубопроводов состоит в том, что к каждому соединению приложена нагрузка, стремящаяся разорвать его. Эта нагрузка равна площади поперечного сечения трубы умноженному на давление наддува.

В соединениях труб могут возникать различные препятствия для потока воздуха.

Угол раствора конуса большее 15" может вызвать отрыв пограничного слоя воздушного потока и увеличение сопротивления.

Если в системе воздух под давлением 1,4 бара подается в трубопровод диаметром 50 мм, его соединения будут подвергаться нагрузке около 30 килограмм, стремящейся разъединить их. Эта нагрузка будет стягивать шланг с трубы, если на трубе отсутствуют какие либо препятствия от стягивания шланга, или нагрузка не направлена по другому пути. Во многих случаях шланг может быть закреплен на трубе настолько ужасно, что это может вызвать разъединение соединения. Легкое решение этой проблемы - соединительная тяга между трубами для передачи нагрузки минуя шланг. При этом обеспечить требуемый ресурс шланга гораздо проще.

Соединительные тяги на трубах промежуточного охладителя разгружают соединение от растягивающих нагрузок.

Несчастный шланг пытается вынести эти нагрузки при высокой температуре, в среде с насыщенной парами углеводородов. Необходимо найти материал для шланга непроницаемый для углеводородных топлив и имеющий незначительное ухудшение свойств при высоких температурах. Такие шланги обычно изготавливаются из кремний-органических материалов, как правило - из фтор-силиконовых каучуков.

Размещение промежуточного охладителя

Поиск места для размещения промежуточного охладителя часто сводится к поиску доступного пространства для достаточно большого агрегата. Для этого не требуется научных знаний. Однако, необходимо соблюсти несколько правил. Недопустимо размещение промежуточного охладителя воздух/воздух в двигательном отсеке. Размещение его за радиатором системы охлаждения также не годится.

Помните, что воздух, прошедший через радиатор системы охлаждения имеет температуру около 50°С или более, он горячей окружающего воздуха и поэтому не способен охладить что-нибудь. Действительно, турбонагнетатель при низких давлениях наддува, не может нагреть впускной воздух до температуры подкапотного воздуха, который якобы должен охладить интеркулер. Когда это происходит, промежуточный охладитель становится «промежуточным нагревателем», а не нужной частью системы турбонаддува. Когда наддув повышается и температура впускного воздуха превышает температуру подкапотного пространства, промежуточный охладитель, начнет немного охлаждать, но будет всегда страдать от серьезной потери своей эффективности. А это не то, что мы хотим получить. Так же нежелательным является излучение тепла под капотом от нагретых деталей двигателя. Термоизоляция и правильно проложенные трубы могут помочь решить эти задачи, но, совершенно очевидно, что моторный отсек неподходящее место для промежуточного охладителя.

Интеркулер должен стоять первым на пути охлаждающего воздуха.

Всегда будьте в поисках злодея называемого " промежуточный нагреватель”

Промежуточный охладитель с разделенным ядром

В ситуации, когда фронтальное пространство для интеркулера ограничено, но имеется избыточная глубина, необходимо рассмотреть интеркулер с разделенным ядром. Вообще интеркулер с разделенным ядром - простой интеркулер с более толстым ядром с перемещенной назад одной половиной. Некоторое количество свежего воздуха подводится к нему, в то время как отработанный воздух от переднего ядра проходит вокруг второго ядра. Компактный, с высоким расходом интеркулер может быть смонтирован при помощи компоновки с разделенным ядром. Эффективность может быгь достаточно высока, потому что задняя половина интеркулера делает свою часть работы.

Промежуточный охладитель воздух/жидкость

Когда пространство или сложности прокладки трубопроводов исключают использование агрегатов воздух/воздух, жидкостная система промежуточного охлаждения становится хорошей альтернативой. Большинство требований к конструкции для интеркулера воздух/воздух также применимо к жидкостному интеркулеру. Хотя имеются различия, вызванные подачей жидкости. В то же время сложная система жидкост- ного охлаждения имеет одно потрясающее преимущество - гораздо больший коэффициент теплопередачи между жидкостью и металлом в отличии от теплопередачи между воздухом и металлом.

Интеркулер на спортивном автомобиле Ferrari 126. На спортивных автомобилях всегда будут установлены интеркулеры воздух/воздух.

Эта большая разница будет играть свою роль, только если все барьеры теплопередачи будут оптимизированы, таким образом можно получить значительное увеличение эффективности промежуточного охладителя. Это путь к системе промежуточного охлаждения, которая имеет термический КПД более 100 %. В настоящее время это не имеет практического применения кроме автомобилей для дрэг рэйсинга, машин для максимальной скорости, или для морского применения. Решение этой задачи требует услуг гениального изобретателя. Без любых изобретательных решений, жидкостные системы промежуточного охлаждения перевращаются в агрегаты воздух/воздух, в которых теплоту впускного воздуха, для передачи в атмосферу, переносит жидкость, в отличие от использования для этого непосредственно воздуха. Основные проблемы при использовании жидкости в значительной степени сосредоточены вокруг расхода жидкости, ее количества в системе, и последующем ее охлаждении.

Общая схема жидкостной системы промежуточного охлаждения

Теплообменник впускного воздуха.

Внутри жидкостного интеркулера легко можно получить большое внутреннее проходное сечение, так как наиболее подходящие для этой цели ядра часто являются воздушными агрегатами, в которые воздух подается с другой стороны.

При использовании типичного ядра воздух/воздух в качестве жидкостного теплообменника, полностью измените направление воздушного потока, чтобы получить большее проходное сечение.

Типичное ядро теплообменника воздух-воздух Охлаждающая жидкость Типичное ядро теплообменника воздух-жидкость Хотя алюминий гораздо более удобный материал для использования в любых интеркулерах, медные элементы ядра, когда условия позволяют их использовать, могут обеспечивать больший коэффициент теплопередачи. Большие проходные сечения, обычно связанные с водяными интеркулерами, позволяют увеличить толщину ядра настолько, насколько позволяет пространство.

Можно предполагать, что жидкость найдет равный доступ ко всем трубам ядра, но распределению воздуха в верхних частях ядра нужно уделить внимание. Простые каналы для воздуха могут предотвращать воздушные ямы. Лучшее решение состоит в том, что жидкость необходимо подводить в самой холодной точке и отводить ее в самой горячей точке.

Небольшие утечки воздуха в интеркулере воздух/воздух некритичны, но любая протечка жидкости в основном ядре теплообменника может быть бедствием. Таким образом интеркулер должен быть обязательно отпрессован и проверен на утечки перед использованием. Давление в 0,5 - 0,7 бара, при наполненном водой ядре, будет подходящим для этого. Не сильно удивляйтесь, когда увидите воздушные пузыри, выходящие через алюминиевые стенки.

Вариант жидкостного промежуточного охладителя, интегрированного во впускной коллектор на двигателе 3S-GTE

Насосы

Наиболее полезные насосы - 12-вольтовые морские трюмные насосы. Они могут быть соединены последовательно или параллельно, в зависимости от давления и расхода жидкости через них. Нельзя упустить тот факт, что чем больше прокачка воды, тем выше эффективность интеркулера. Рассматривайте расход воды 40 л в минуту как минимальный. Необходимо найти компромиссное решение относительно ресурса насоса с одной стороны и эффективностью интеркулера с другой, если требуются, чтобы насосы работали постоянно. Имея в виду важность характеристик, ответ должен быть - насосы должны работать непрерывно. Если насосы работают непрерывно, происходит интересная вещь - когда нет давления наддува, впускной воздух будет охлаждать воду в интеркулере.

Подключение насосов к 12-вольтовому источнику питания обеспечит полную проверку их работоспособности при включении зажигания. Насосы должны быть установлены как низшие точки системы промежуточного охлаждения, так, чтобы они всегда были заполнены водой и таким образом, исключалась возможность их работы всухую.

Теплоноситель

Вода самая лучшая охлаждающая среда. Гликоль и другие незамерзающие вещества ухудшают способность воды переносить теплоту и должны использоваться только в количествах, требуемых для предотвращения замерзания теплоносителя и коррозии элементов системы.

Используйте то же самое соотношение воды и антифриза в интеркулере, которое используется в системе охлаждения двигателя. Использование современного антифриза улучшит антикоррозионные свойства и предотвратит коррозию алюминия. Дистиллированная или деминерализованная вода обеспечит содержание системы в чистоте.

Резервуары

Размер резервуара имеет важное значение в эффективности жидкостного интеркулера. Имейте ввиду, что большинство применений наддува продолжается всего несколько секунд - скажем, 15 в среднем. Тогда разумно убедиться, что в этом промежутке времени любая данная часть воды не должна дважды попасть в интеркулер. Насос с производительностью 40 л в минуту будет перемещать 10 л за 15 секунд: таким образом, здесь подходящий размер резервуара - 10 л. Такой объем может показаться большим, но мы сделали вывод, что чем больше резервуар, тем больше время потребуется воде, чтобы повторно пройти через интеркулер. Не трудно заметить, что поскольку используется большой резервуар, уменьшается потребность в передних радиаторах. Имейте ввиду, что чем больше масса воды, тем больше тепловая инерция.

Передний радиатор

Передний радиатор - наименее важная часть системы промежуточного охлаждения, поскольку он выполняет свою работу, когда наддува нет. В начале работы под наддувом, вся система будет иметь приблизительно температуру окружающей среды. Когда давление начнет расти, нагревая жидкость в основном ядре интеркулера, нагретая жидкость должна попасть в радиатор прежде, чем возникнет перепад температур, чтобы вытеснить теплоту. Она попадет в радиатор, может быть через 7 или 8 секунд, в зависимости от размера резервуара. Этот интервал времени типичен для работы под наддувом. Теперь ясно, что передний радиатор будет выполнять большинство своей работы после работы под давлением. Так как перепад температур между водой и передним радиатором мал по сравнению с перепадом температур между нагнетаемым воздухом и водой, время, требуемое для охлаждения воды намного больше, чем время, требуемое для ее нагрева. Это еще одна причина для того, чтобы водяные насосы работали постоянно. Передний радиатор не должен быть столь большим, как это может казаться на первый взгляд, потому что при установке двух радиаторов друг за другом, через передний радиатор будет проходить гораздо больше воздуха, чем через задний. Например, при скорости около 90 километров в час сквозь охладитель площадью 0,1 квадратный метр потенциально может пройти 150 м3/мин охлаждающего воздуха. Конечно это тот случай, когда больше значит лучше, но не настолько лучше, чтобы бежать за огромным передним радиатором.

Распыление воды на промежуточный охладитель

Распыление воды на ядро интеркулера воздух/воздух, является методом повышения его термического КПД. Предварительное испытание такого механизма показало небольшое увеличение на 5 -10 %. Конструкцию и использование любой системы охлаждения, основанной на расходе жидкости, лучшие рассматривать только для специальных мероприятий.

Впрыск воды

Распылитель воды - не очень интересное устройство. Оно не имеет места в хорошо спроектированной системе турбонаддува. В двух обстоятельствах это устройство жизнеспособно: турбонагнетатель домашнего изготовления с протяжкой воздуха через карбюратор, или нагнетатель Рутса, установленный между огромным двигателем и двумя еще более огромными карбюраторами. Увеличение запаса прочности двигателя с турбонагнетателем при помощи, по существу, ненадежного устройства - это идея, чье время давно прошло. Пусть покоится с миром.

В этой карбюраторной системе турбонаддува, смонтированной на двигателе Pontiac V8, установлен впрыск воды.

Вода подается по белой трубке к форсунке и распыляется на входе в карбюратор. Это вынужденная мера, так как в системе отсутствует интеркулер.

Впрыск воды на автомобиле с турбонагнетателем - неоправданная «скорая помощь» для неправильно выполненой на первых этапах работы.

Одноразовый промежуточный охладитель

Специализированные события, такие как дрэг-рейсинг или разгон на максимальную скорость, представляют особый интерес для использования одноразового суперэффективного промежуточного охладителя. В то время как он является непрактичным для повседневного использования, промежуточный охладитель, хорошо работающий с эффективностью более 100 %, легко может быть создан и использован при короткой продолжительности работы с высоким давлением наддува. Принцип действия промежуточного охладителя с эффективностью более 100 % состоит в том, чтобы обеспечить охлаждающую среду для ядра теплообменника, которая имеет температуру или ниже температуры окружающей среды или может поглощать огромные количества теплоты в процессе испарения при контакте с ядром. Примером такой охлаждающей среды является омываемый водой теплообменник, наполненный льдом, или теплообменник с распылением жидкого азота. Независимо от используемой охлаждающей среды, она должна постоянно двигаться, чтобы избежать формирования пограничного слоя. Стационарный пограничный слой удерживает тепло и сильно снижает теплообмен между ядром и средой охлаждения. Не поддавайтесь восторженным мыслям о том, насколько хорош промежуточный охладитель с эффективностью более 100 % и не упустите не менее важную сторону конструкции интеркулера - потери давления в ядре.

Итоги главы

Что такое промежуточный охладитель, и почему on настолько важен?

Промежуточный охладитель это теплообменник (радиатор), помещенный на выходе компрессора турбонагнетателя. Его цель - понизить температуру сжатого воздуха, выходящего из турбонагнетателя, увеличить плотность воздуха и следовательно - обеспечить более высокое давление наддува.

Понижение температуры воздуха имеет два основных плюса: оно увеличивает мощность, и предотвращает детонацию на значительно более высоких давлениях наддува. Охлаждение нагнетаемого воздуха делает его более плотным - т.е., большее количество молекул в кубическом сантиметре. Увеличение плотности составляет около 10 - 15 %, в зависимости от уровня наддува и эффективности охладителя. Мощность увеличивается пропорционально плотности. Это, конечно, полезное увеличение мощности, но это не все, что мы имеем. Увеличение зоны, безопасной от детонации, настолько велико, из-за понижения температуры, что часть этой увеличенной зоны может использоваться, чтобы повысить уровень наддува. При использовании хорошего промежуточного охладителя граница детонации может быть отодвинута на 0,25 - 0,3 бара наддува (конечно при обеспечении правильного соотношения воздух/топливо). Давление наддува может и должно тогда быть поднято на 0,2 - 0,25 бара. Улучшение характеристик в результате этих дополнительных 0,2 - 0,25 интеркуллерных бара приблизительно то же самое как характеристика, обеспечиваемая первыми 0,35 - 0,4 бара наддува.

Однако, здесь могут быть ловушки. Во-первых, теперь модно предлагать интеркуллер как замену правильному соотношению воздух/топливо. Он не может заменить его. Правильное соотношение воздух/топливо обязательно. Если вы выбираете одно или другое, Вы должны выбрать правильное соотношение воздух/топливо. И то и другое - гораздо лучше.

Во-вторых, слишком большие потери давления в промежуточном охладителе могут увеличить давление в выпускном коллекторе на- столько, что фактически могут свести на нет все увеличение мощности, обеспечиваемое промежуточным охладителем. Промежуточный охладитель с нулевым сопротивлением идеален, подберитесь к нему так близко, насколько это возможно. Знайте то, что Вы покупаете. Узнайте падение давления при расходе воздуха в 1,5 раза больше, чем у вашего двигателя. Оно должно быть менее 0,15 бара. Немногие будут удовлетворять этому требованию, включая и штатные интеркулеры.

Какого типа бывают промежуточные охладители ?

Имеются два основных типа промежуточных охладителей: "воздух/ воздух" и "воздух/жидкость". Каждый из них имеет преимущества, и каждый имеет свои недостатки. Интеркулер "воздух/воздух" является самым простым. Он не имеет никаких подвижных частей и столь же прост как кирпич.

Его способность охлаждать нагнетаемый воздух вполне удовлетворительна, но потери давления могут быть высоки, особенно с, обычно используемыми, небольшими ядрами. Данная потеря давления в промежуточном охладителе обнаружится как увеличение вдвое противодавления в выхлопном коллекторе - извечного врага турбокомпрессора. В целом, хороший узел выбирается для адекватного отвода тепла и минимальной потери давления.

Система VMaunt, с расположением интеркулера под углом

Агрегаты "воздух/жидкость" немного сложнее, но прекрасно выполняют свою работу. Такая система состоит из двух радиаторов, один между турбонагнетателем и двигателем и меньший перед стандартным радиатором системы охлаждения. Жидкость прокачивается электрическим насосом.

Решения, на основе которых выбирается тот или иной вариант должны быть основаны на двигателе, доступном пространстве, датчиках расхода воздуха системы впрыска топлива и разнообразных других факторах. Пример каждого выбора: очевидный выбор для 6-цилиндро-вого BMW - жидкостный интеркулер, так как отсутствует пространство для соответствующего ядра воздух/воздух. Дальнейшая сложность в установке интеркулера воздух/воздух в BMW - полное отсутствие высокоскоростного потока воздуха в единственном месте, где можно уста- новить только небольшое ядро. С другой стороны, Форд Mustang GT предлагает во всех отношениях идеальное место для интеркулера воздух/ воздух. Существует пространство для достаточно большого интеркулера воздух/воздух (целых три ядра), и к нему легко можно подать огромное количество охлаждающего воздуха.

Что такое впрыск воды, и когда он необходим ?

Впрыск воды - распыление потока Н2О в систему впуска. Теплота, поглощенная при парообразовании воды дает сильный эффект охлаждения для горячего сжатого воздуха, выходящего из турбонагнетателя. Понижение температуры воздуха на впуске снижает тенденцию к детонации. Не будьте слишком поспешны, чтобы создать защиту от детонации, основанную на таком устройстве. Впрыск воды лучше использовать, когда желателен уровень наддува более 0,4 бара, но в системе отсутствует промежуточный охладитель. Не допускайте использования впрыска воды как оправдания за несоответствующее соотношение воздух/топливо. Рассмотрев все вышесказанное, Вы должны быть далеки от идеи использовать впрыск воды.

Еще в ту же тему

  • Теплоизоляционные чехлы для колес
  • Подвеска на двойных поперечных рычагах
  • Подвеска МакФерсон McPherson
  • Вся правда о присадках
  • Глава 4 "Компьютеры и чипы" из книги "МОЩНОСТЬ тюнинг двигателя" Д.Сторер и Б.Джекс

Комментарии ( 0 )

Понравилось?! Не забудь поделиться! ;-)

Мы в соцсетях

До 7% на остаток по счету, честный кэшбэк деньгами, а не фантиками до 30% от суммы покупки, снятие наличных в любых банкоматах! И это не все плюсы использования банка Tinkoff. Узнай больше, как удобно пользоваться картой.

Теория и практика

Новости автоспорта

Завершился предпоследний этап Российской Дрифт Серии на трассе «NRing» в Нижнем Новгороде, собравший на своих трибунах 2200 любителей дрифта.

В Минске состоялись соревнования SMP RDRC и Unlim 500+ Belarus. Результаты.

NRing Circuit - 4-й этап чемпионата MaxPowerCarsYokohama Open Cup

Дрэг-рейсинг. Финал Чемпионата Сибири 2017 в Барнауле

Mitjet Series Russia выступит гонкой поддержки FORMULA 1 ГРАН-ПРИ РОССИИ 2017

Стартовали продажи российского спорткара Shortcut

Новый формат RHHCC - Winter CUP

Поддержать проект

Уважаемые читатели, мы работаем для Вас на чистом энтузиазме, но вы можете помочь развитию проекта:

Материалы: http://raceportal.ru/race-theory-and-practice/item/503-korki-bell-maximum-boost-turbonadduv-proektirovanie-ustanovka-i-ispytanie-sistem-tu


Back to top