Что такое амортизатор?

1 ≫

Амортизатор. Что это такое ?

Амортизаторы появились на автомобилях задолго до широкого внедрения известных сегодня цилиндрических конструкций с перемещающимся поршнем. Первоначально почти повсеместно распространенные рессоры совмещали в себе одновременно и пружину и амортизатор. Пружинили листы, они же и терлись друг об друга, стянутые для этого в пакеты, переводя кинетическую энергию в тепловую и гася вертикальные колебания.

Идея разделить функции пружин и демпфирующих устройств была вынужденной. Широкое внедрение независимой подвески, значительно повышающей комфорт и управляемость, подвело к этому чисто конструктивно. С приходом винтовых пружин вместо рессор рядом с ними так и просилось что-нибудь цилиндрическое. К тому же, разболтанную рессору приходилось менять целиком или перетягивать, что по трудоемкости значительно превосходило замену пары амортизаторов, закрепленных двумя гайками каждый.

Механическое трение заменили на гидравлическое. Первое было очень трудно контролировать, по мере быстрого износа трущихся поверхностей характеристики всей системы так же быстро менялись. Кроме того, все это сопровождалось, обычно, скрежетом и скрипом что, как Вы понимаете, не добавляло комфорта пассажирам. Гидравлическая система с маслом, прогоняемым через тонкие калиброванные отверстия клапанов служила на несколько порядков дольше, не меняя существенно своих характеристик. К тому же появилась возможность достаточно четко дозировать эти характеристики, простой сменой двух или четырех амортизаторов делать один и тот же автомобиль более комфортабельным или более спортивным.

Гидравлическое трение имело перед механическим еще одно бесспорное преимущество. Клапаны, через которые протекает масло, можно настроить так, что сопротивление амортизатора будет разным в зависимости от направления работы подвески. Обычные амортизаторы имеют усилие при отбое в два-четыре раза больше, чем усилие при сжатии. Это означает, что когда колесо наезжает на препятствие, оно с легкостью идет вверх, а затем, уже при возврате его назад, пружинам и приходится работать, тратя накопившуюся при сжатии кинетическую энергию. Меняя характеристики сопротивления ходов, получают "более спортивные" или "более комфортные" подвески, не меняя принципиально их конструкции.

Автомобиль построен вокруг человека. Если рассматривать его конструкцию с этой точки зрения, то окажется, что между этим самым человеком и кузовом находится сиденье, которое установлено на полу, вместе с порогами и боковинами образующими упругую балку, далее следуют пружины, амортизаторы и шины. Каждый из этих элементов пружинит и каждый имеет свои характеристики, включая характерные только ему значения резонансных частот. Ну а резонансные колебания, как мы хорошо помним из учебника физики, разрушают даже мосты, поэтому солдаты через них "в ногу" не ходят. Поэтому-то и все механические системы автомобиля подбираются в процессе его разработки так, чтобы избежать вредных или неприятных колебаний.

Не только избежать разрушительных в прямом и переносном смысле резонансных колебаний, но и сделать передвижение в автомобиле максимально комфортным призваны элементы подвески. Исторически человек связан с автомобилем и другими механическими средствами передвижения только последние 100-200 лет. Все тысячелетия до этого он передвигался пешком и, поэтому, заложенная в него природой комфортная частота колебаний составляет 1-2 в секунду при амплитуде, равной примерно 1/8 длине тела. Все остальные колебания либо слишком часты (автомобиль "трясет"), либо укачивают и вызывают морскую болезнь (автомобиль плывет как "баржа"). Именно характеристики амортизаторов являются последним самым мощным инструментом для достижения оптимального комфорта в машине.

Все амортизаторы принято делить на "гидравлические", "газовые" и "поддутые" ( c газом низкого давления). Деление это условно потому, что во всех трех случаях "центральный" узел - клапан остается принципиально неизменным и во всех трех случаях в качестве компенсационного элемента используется газ. Центральный клапан перемещается в центральном цилиндре и отличия начинаются дальше. Гидравлические амортизаторы и поддутые имеют еще и внешний цилиндр, куда перетекает масло через систему нижнего клапана. Газовый амортизатор внешнего цилиндра не имеет и вся его конструкция упакована в одном.

Таким образом, амортизаторы логичнее делить на двухтрубные и однотрубные. При работе любых амортизаторов, по определению, выделяется большое количество тепла, поэтому от применяемого в них масла требуется не только коррозионная, но и термическая стойкость - способность выдерживать температуры до 160 градусов не меняя структуры и свойств. Одновременно с этим актуальна задача отвода тепла. Двухтрубные гидравлические амортизаторы отводят тепло хуже чем однотрубные высокого давления, ведь у первых "генератор тепла" - центральный цилиндр закрыт сверху еще одним соосным цилиндром, наполненным маслом и компенсационным газом.

Зачем нужен компенсационный объем газа? Жидкость, как известно, не сжимается. Вернее, сжимается, но очень незначительно как те крокодилы, которые летают, но "низэнько-низэнько". Поэтому, если бы не было компенсационного объема, поршень внутри цилиндра при резком перемещении (типа удар) натыкался на "каменную стену" масла, которое в силу своей большой инерции еще не начало течь через калиброванные отверстия клапанов. Именно компенсационный объем газа сжимается первым и принимает на себя удар и лишь потом масло начинает проходить через калиброванные отверстия клапанов центрального штока. К тому же при работе масло нагревается, часто до значительных температур. Увеличение его объема при это необходимо компенсировать и делает это небольшая порция газа.

Гидравлические амортизаторы демпфируют мягче потому, что у них две системы клапанов, в отличие от однотрубных газовых, у которых только одна, расположенная на штоке, плюс газ у них под более низким давлением. Вместе с этим, они максимально инертны, медленно реагируют на перемещения колеса, особенно при низкочастотных колебаниях небольшой амплитуды. Чем выше давление газа, подпирающего масло, тем выше "быстрота реакции" амортизатора. В амортизаторах высокого давления и масло и газ расположены последовательно в одном цилиндре и разделены плавающим клапаном. Газ (обычно это азот) находится под давлением около 25 атмосфер. Таким образом, клапан штока находится все время в "поджатом", "подпружиненном" состоянии и гораздо быстрее реагирует на выбоины и ухабы дороги.

Гидравлические двухтрубные амортизаторы имеют еще несколько особенностей, становящихся недостатками при определенных режимах эксплуатации автомобиля. При резком перемещении поршня на обратной стороне клапана создается разряжение и могут образоваться кавитационные пузырьки. Это резко изменяет характеристики демпфирования. При часто повторяющихся резких перемещениях, например, при прохождении раллийной трассы, амортизатор просто "вскипает" - кавитационные пузырьки и газ компенсационного объема смешиваются с маслом в подобие эмульсии, при этом демпфирование практически исчезнет.

Газонаполненные амортизаторы высокого давления появились, в основном, как ответ на необходимость решения этой проблемы. Подпружиненное масло практически не вспенивается, а отделение компенсационного объема плавающим поршнем снимает вопрос о возможном смешивании газа с маслом. Именно поэтому амортизаторы высокого давления можно переворачивать "вниз головой", например в стойках Макферсона, а гидравлические - нет.

Двухтрубные амортизаторы тяжелее однотрубных. Установка первых на автомобиле ведет к увеличению неподрессоренной массы подвески и, как следствие, увеличению ее инертности. При частых перемещениях вверх-вниз на характерных участках дороги (типа раллийная трасса), инерция заставляет подвеску как бы "задумываться" поочередно то в верхней, то в нижней точки и пропускать очередное летящее на нее препятствие или яму. В этом заключается еще одна причина всеобщей любви спортсменов к однотрубным газонаполненным амортизаторам.

Исправные и неисправные амортизаторы

Автомобиль, колесо которого вывешено в воздухе, не может тормозить, разгоняться или поворачивать, т.е. становится неуправляемым. Пружины стремятся вернуть колесо на землю, но ударившись о покрытие, оно так же быстро отскакивает назад. Колебания повторяются, автомобиль встречает новые препятствия и ямы и, если бы не амортизаторы, при скоростях больше 20-30 км/час управлять им становится практически невозможно. Характеристики же исправного амортизатора рассчитаны так, что колесо делает только одно "полноценное" движение вверх, возвращается вниз и после этого 80% энергии удара погашено амортизатором - превращено в тепло и рассеяно в воздухе.

Исправные амортизаторы являются ведущим элементом активной безопасности. Опасность ситуации заключается в том, что, во-первых, водители этого не осознают, а во-вторых износ амортизаторов происходит постепенно, часто без видимых или слышимых признаков. Водитель привыкает к "новому" поведению автомобиля, но в тот момент, когда нужно будет перестроиться и уйти от неожиданно появившегося встречного автомобиля или поворот окажется круче, чем он выглядел при входе в него. Виноваты будут не амортизаторы, а водитель, не справившийся с управлением.

Чем более неисправны амортизаторы, тем больше времени колесо проводит в воздухе, а не в контакте с дорогой. В результате увеличивается тормозной путь, особенно нагруженного автомобиля и с прицепом, снижается скорость безопасного прохождения поворотов и порог начала аквапланирования, происходит интенсивный износ шин, узлов ходовой части, ухудшается освещение дороги и происходит ослепление встречных водителей. Особенно не любят неисправные амортизаторы системы АБС, ПБС и Traction Control. Их датчики настроены на отслеживание поведения колес, катящихся по земле, а не вращающихся со страшной силой в воздухе. Электронные "мозги" этих систем путаются и дают неверные указания исполнительным механизмам.

Самое же главное, ухудшается управляемость, автомобиль начинает рыскать, особенно при изменении скорости (разгоне или торможении). Самое же последнее, но то, что принято замечать сразу - значительно снижается комфортность поездки, машину трясет, вибрация становится неравномерной и часто сопровождается стуками. Это первый очевидный признак неисправности амортизаторов. Значит, пришло время для их осмотра и диагностики.

Выделяют четыре способа диагностики амортизаторов - от самого поверхностного до "глубинного" с применением, конечно же, микропроцессоров и компьютеров.

Несмотря на то, что амортизатор как будто специально расположен в самом неудобном для осмотра месте, этот тест один из самых достоверных и, несомненно, дешевых и оперативных. На амортизаторе может быть заметен масляный "туман", но не должно быть подтеков. Подтеки масла свидетельствуют о потере герметичности и о том, что амортизатор уже "кончен" или недалек от этого. Если при проверке у Вас возникли сомнения, протрите амортизатор насухо и осмотрите его через несколько дней работы.

Обратите внимание на состояние буфера отбоя и пыльника. Масло, попавшее на их поверхность не только говорит о проблемах амортизатора, но и приводит к их очень быстрому разрушению. Это еще более ускорит выход из строя всего амортизатора - своеобразный эффект снежного кома.

Важнейшим элементом визуального осмотра является состояние шин. Если на их поверхности, особенно по боковой кромке наблюдаются неравномерные пятна износа, это явный знак неисправности амортизаторов. Можно также наблюдать за поведением колеса при движении из другого автомобиля. Здесь не нужно быть экспертом, чтобы заметить, если оно "скачет" и что амортизатор неисправен.

Еще одним "визуальным" тестом является осмотр штока. Визуальным в кавычках потому, что в отличие от всего сказанного выше амортизатор нужно снимать. Тем не менее, если на полированной поверхности вы обнаружили следы от зажимов или пятна ржавчины - меняйте амортизатор. Другим печальным сигналом может быть износ хромового покрытия в виде пятна с одной стороны. Это следствие неправильной затяжки при установке, приведшей к несоосности цилиндра и штока. Результатом также будет потеря герметичности и выход амортизатора из строя.

Самый известный и самый критикуемый тест. Действительно, раскачав автомобиль за угол и отпустив его в нижней точке, можно выявить только заведомо "убитый" амортизатор. С ним автомобиль будет продолжать колебания. Однако, если он встал "как вкопанный", это может означать совсем не работающий, а наоборот, заклинивший амортизатор. Делайте этот тест больше для самоуспокоения и старайтесь "поймать" момент начала потери рабочих свойств при движении.

3. Оценка управляемости автомобиля в движении

Комфорт в автомобиле при его движении понятие гораздо более субъективное, чем устойчивость и управляемость. Неисправные амортизаторы приводят к тому, что на скоростях начиная с 80 километров в час автомобиль начинает рыскать, особенно при встрече с мелкими неровностями дороги. Снижается курсовая устойчивость, начинается продольная и поперечная раскачка. Раскачка имеет продолжительный незатухающий характер. При движении по неровностям автомобиль показывает замедленную реакцию на руль - тот уже вывернут, а машина все не начинает поворачивать.

Повторяясь, можно сказать, что водитель постепенно привыкает к отклонениям в управляемости автомобиля и на первых порах подстраивается под них. Действительно разницу можно оценить только сравнив два автомобиля - один с новыми, а другой - с "убитыми" амортизаторами. Однако, такая ситуация больше характерна для полигонов и журнальных статей, чем для реальной жизни. Поэтому, при первых подозрениях на проблемы с управляемостью и устойчивостью следует покачать автомобиль за углы, осмотреть амортизаторы и, либо немедленно менять их на новые (при наличие течи масла), либо отправляться на специализированный пункт инструментального контроля.

4. Инструментальный контроль (стендовая диагностика)

Различают вибрационные стенды и проверку демпфирующего усилия на испытательных стендах. В первом случае Вам необходимо заехать на автомобиле на площадку исполнительного механизма стенда и за несколько минут на нем будет получена диаграмма осевых колебаний. Сравнивая ее со специфичными граничными характеристиками для данного автомобиля, специалисты станции могут практически безошибочно оценить состояние амортизаторов.

Проверка демпфирующего усилия требует разборки подвески и снятия амортизатора. Такая диагностика позволяет получить максимально точную информацию, но дорога и сложна уже сама по себе. Просто оцените стоимость снятия и установки амортизаторов. Стендовая оценка демпфирующего усилия оправдана только в том случае, если есть сомнения в поведении дорогих амортизаторов стоимостью от ста долларов и в результате может отпасть необходимость их замены.

От чего умирают амортизаторы

В самом амортизаторе сломаться могут только две вещи - выйти из строя клапаны и нарушиться герметичность сальника штока. Если поломка первого рода встречается достаточно редко, то вторая является основной и имеет множество причин для происхождения.

Надежно работающий сальник амортизатора представляет собой достаточно нетривиальную конструкторскую задачу. Действительно, его шток проходит через масляную ванну изнутри наружу, повторяя это циклическое движение сотни тысяч раз, часто со значительными ускорениями, нагреваясь (и расширяясь), вместе с нагревающимся при работе маслом. Еще сложнее ситуация у однотрубных систем, ведь там все усугубляет давление газа, которое равномерно распространяется и на масло, по определению стараясь вытолкнуть его наружу.

После решения конструкторской задачи на первое место выходит качество изготовления и качество материалов. Не менее важны и показатели стабильности производства и тех допусков, посадок и отклонений, которые закладываются в каждый амортизатор. Все это и входит в определение такого емкого слова как "культура производства". Именно поэтому одни амортизаторы служат дольше чем автомобиль, а другие нужно проверять каждые 20 тысяч километров. Но и в цене разница может доходить до 10 раз.

Во время работы на автомобиле шток амортизатора "собирает" взвешенную в воздухе пыль и иные механически (абразивно) и химически агрессивные вещества типа соляного раствора, которым поливают зимой наши дороги. Они просачиваются в небольших количествах даже через исправный защитный кожух (пыльник). Другое дело, когда этот кожух поврежден или даже частично разрушен. Пыль и грязь, попадая на шток, как наждаком срезают поверхность сальника и масло начинает просачиваться наружу.

Полированная поверхность штока рассчитана на многолетнюю эксплуатацию. Появляющаяся на ней ржавчина свидетельствует либо о сверхагрессивной среде, либо о проблемах с подбором материала и соблюдением качества производства его изготовителем. Раковинки ржавчины вызывают интенсивный износ сальника, но самое обидное, когда шток поврежден еще при установке горе-мастером, использовавшем в работе пассатижи, струбцины или иные металлические захваты. Царапины на полированной поверхности очень скоро приведут к разрушению сальника. Для избежания же неравномерного износа поверхности штока затягивать амортизатор до упора нужно только когда автомобиль стоит на колесах с нормальной нагрузкой.

Простая регулярная проверка целости и сохранности пыльника и правильная первоначальная установка амортизатора смогут значительно продлить его жизнь. Труднее избежать неблагоприятных режимов работы, изнашивающих внутренние клапаны. К таким относятся предельно высокие и низкие температуры и длительная езда на невысокой скорости с большими амплитудами перемещения штока. Действительно, зиму, лето и дачные участки с "бетонками" не отменишь, но вот буфер отбоя нужно также проверять регулярно. Он размягчается он попадающего на него масла и при его разрушении подвеску может "пробить".

Замена амортизаторов, по сравнению, скажем, с заменой масла или топливного фильтра, может привести к значительным изменениям в поведении автомобиля. Отличаются не только "гидравлика" и "газ", но и однотипные амортизаторы различных фирм.

Комфорт и управляемость - показатели технически противоположные. Увеличивая один из них, мы уменьшаем другой и так далее. Неверно также утверждать, что газовые одноцилиндровые амортизаторы "в целом" лучше гидравлических двухтрубных. Да, они легче, лучше охлаждаются, практически не вспениваются и их можно переворачивать "вверх головой". Однако, все эти свойства становятся реальными преимуществами только в условиях спортивных соревнований.

Для подавляющего числа "рядовых" автомобилистов и условий их езды гидравлические амортизаторы справляются со своими задачами на сто процентов. Более того, большинство из тех, кто попробовал, отмечает излишнюю жесткость газовых однотрубников. То же самое относится и к ценовому подходу. Практически все однотрубные газонаполенные амортизаторы на 30-50%% дороже гидравлических. То же самое относится и к соотношению цен на амортизаторы российского и зарубежного производства, но разница здесь измеряется уже "разами". Стоит ли поэтому ломать копья и экспериментировать?

Пяти-десятилетняя иномарка вполне пройдет еще два-три года на новой гидравлике средней цены, а подержанный российский автомобиль и вовсе опасно ставить на "газ". Его кузов наверняка уже начал терять и без того небольшую изначальную жесткость и даже год, проведенный на газонаполненных амортизаторах, разобьет его окончательно.

Для амортизаторов, как и для всех расходных материалов, справедливо следующее правило - чем более раскручена марка, чем больше денег вкладывает фирма в рекламу, тем чаще их подделывают и тем больше вероятность наткнуться на продукцию третьих-четвертых стран в красивой упаковке. Точно также, как и производители фильтров и сцеплений, амортизаторные компании делятся на "больше" поставщиков конвейеров и тех, кто ориентируется на розницу. Точно также, как и в случае с Жигулями предпочтение при замене стоит отдавать "родным" амортизаторам, для иномарок существуют "оригинальные" поставщики.

На российском рынке сегодня представлены все основные производители. Их условно можно разбить на три группы, начиная с самых дорогих, но гарантированно надежных и заканчивая массовыми и доступными моделями:

1. Koni, Bilstein, de Carbon (только французский, а не алжирский).

2. Boge, Sachs, KYB.

3. Monroe, Delco, QH, Rancho, Gabriel.

При покупке амортизатора тщательно сверьте комплектность набора с тем, что значится в каталоге. В него могут входить специальные детали крепления, буферы отбоя, пыльники и т.д. При установке нельзя перетягивать резиновые втулки крепления, а окончательную затяжку следует производить на стоящем на колесах автомобиле с тем, чтобы обеспечить со-осность элементов амортизатора.

Меняйте амортизаторы на СТО. Если у Вас нет достаточного опыта и специального инструмента не стоит экспериментировать. Специальный инструмент (съемник) требуется на многих моделях автомобилей (а на многих - не требуется) для сжатия и фиксации пружины подвески для ее снятия. При неумелом обращении, последняя может в буквальном смысле слова "выстрелить", последствия чего разрушительны и даже убийственны.

В статье, которую Вы только что прочитали, подробно описаны "классические" амортизаторы. Мы не упомянули "активную подвеску", амортизаторы с комбинированными свойствами типа Monroe Sensa-Trac, регулируемые по жесткости амортизаторы потому, что 95% автомобилистов с ними не сталкивается.

Материалы: http://avto74.com/amortizatory

2 ≫

  • Двигатель

Амортизатор — устройство, превращающее механическую энергию в тепловую. Служит для гашения (демпфирования) колебаний и поглощения толчков и ударов, действующих на корпус (раму). Амортизаторы применяются совместно с упругими элементами пружинами или рессорами, торсионами, подушками и т. п.

Главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Т.е. колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. При этом сам вес автомобиля держат в основном пружины или рессоры.

Не следует путать амортизатор и газовую пружину. Последние также часто встречаются в автотехнике и быту, но имеют другое назначение. Справедливости ради надо отметить, что «чистых» амортизаторов почти не встречается, они всегда подпружинены избыточным давлением газа в бустере. Чистые газовые пружины (без дополнительного сопротивления движению), наоборот, встречаются довольно часто.

Все амортизаторы работают по принципу преобразования кинетической энергии в тепловую. Конкретный вид такого преобразования определяется типом амортизатора: гидравлический, фрикционный, релаксационный.

Классификация амортизаторов

  • по принципу действия — на фрикционные или механические (сухого трения), гидравлические (вязкостного трения) и релаксационные;
  • по характеру действия сил трения — на амортизаторы одностороннего и двустороннего действия (с сопротивлением на прямом и обратном ходах);
  • конструктивно гидравлические амортизаторы делятся на рычажно-лопастные, рычажно-поршневые и телескопические (двух- и однотрубные) с газовым подпором или без него;
  • по характеру изменения силы сопротивления, в зависимости от перемещения катков, скорости и ускорения этого перемещения амортизаторы подразделяются на:
    • амортизаторы с примерно постоянной силой трения (например, простой механический амортизатор танка «Ландсверк»);
    • амортизаторы с силой трения, зависящей от перемещения («Леопард-2»), при этом сила трения может быть как пропорциональна перемещению, так и иметь нелинейную зависимость;
    • амортизаторы с силой трения пропорциональной скорости перемещения катка (подавляющее большинство современных гидравлических амортизаторов);
    • амортизатор, сопротивление которого меняется пропорционально ускорению.

Односторонний амортизатор

У амортизатора такого типа сопротивление при ходе, соответствующем сжатию подвески, незначительно, а основное поглощение энергии происходит при отбое. Благодаря этому они обеспечивают несколько более плавный ход, однако с ростом неровностей дороги и скорости подвеска не успевает занять исходное положение до следующего срабатывания. это приводит к «пробоям» и заставляет водителя снизить скорость. С появлением около 1930-го года амортизаторов двойного действия одноходовая конструкция постепенно вышла из употребления.

Двусторонний амортизатор

Амортизатор, который действует (работает) в двух направлениях, то есть амортизатор поглощает энергию при движении штока в обе стороны, передавая, однако, при этом и некоторую часть усилия толчков на кузов при прямом ходе. Такая конструкция амортизатора эффективнее, чем амортизатор односторонний, в том смысле, что может быть построена с учётом необходимого компромисса между плавностью хода и стабильностью автомобиля на дороге. Для скоростных автомобилей характерны более «жёсткие» настройки, для комфортабельных пассажирских — более «мягкие», где бОльшая часть работы амортизатора приходится на отбой.

На автотранспорте, как правило, эффективность «рабочего хода» амортизатора (сжатие, наезд колесом на препятствие) делают меньше, чем эффективность отбоя (обратного движения). В этом случае (при сжатии) амортизатор меньше передаёт толчки от неровностей на кузов, и (при растяжении) «придерживает» колесо от ударов его пружиной о дно выбоин дороги.

Фрикционные амортизаторы

Фрикционные (механические) амортизаторы в простейшем случае представляют из себя трущуюся пару с фиксированным усилием сжатия. Возможна конструкция с сопротивлением, пропорциональным перемещению, с оперативно регулируемым усилием и т.д. Очевидным свойством фрикционных амортизаторов является независимость их сопротивления от скорости перемещения рычага. Поэтому они в прямом смысле слова являются демпферами, так как выполняют только одну из указанных в определении амортизатора функций — гашение колебаний. Достоинства — простота и относительная ремонтопригодность, пониженные требования к механической обработке деталей, условиям эксплуатации, стойкость к мелким повреждениям. Принципиальные недостатки — неустранимый износ трущихся поверхностей и наличие некоторого усилия страгивания, избавиться от которого без усложнения механики невозможно. Как результат — на автомобилях данный тип амортизаторов давно не применяется, сохраняясь лишь на отдельных образцах военной техники. Также в лёгких и/или низкоскоростных транспортных средствах (мопеды, тракторы и т. п.) роль фрикционного гасителя колебаний может выполнять трение между деталями подвески.

Гидравлические амортизаторы

Гидравлические амортизаторы построены по принципу протекания жидкости через систему отверстий и производства гидравлического сопротивления (как на сжатие, так и на отбой).

Конструкция гидравлических амортизаторов всех производителей идентична, за исключением небольших нюансов (например, систем регулировки жесткости). Во всех вариантах конструкции основным рабочим элементом является гидравлическая жидкость (масло, оно же обеспечивает смазку). Газ не является демпфирующим элементом и предназначен для создания т.н. «компенсационного объема», т.к. жидкость практически не сжимаема. При отсутствии компенсационного объема внутри цилиндра резкое перемещение поршня вызывало бы удар в «прочную стену» масла, которое ввиду высокой инерции еще не начало течь через отверстия клапанов.

Сила сопротивления гидравлического амортизатора зависит от скорости перемещения штока. Жесткость зависит от начальной настройки перепускных клапанов (для амортизаторов массового предназначения начальную настройку задает производитель на заводе однократно на все время эксплуатации; в амортизаторах спортивного назначения жесткость может регулировать пользователь), изначальной вязкости жидкости (масла) и температуры окружающей среды, которая влияет на вязкость масла.

Для всех гидравлических амортизаторов актуальна задача увода тепла. Гидравлические двухтрубные амортизаторы хуже отводят тепло, в сравнении с однотрубными амортизаторами высокого давления, т.к. «генератор тепла» (цилиндр) по центру закрыт сверху вторым соосным цилиндром, который наполнен компенсационным газом и маслом. Чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе.

При значительном морозе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов.

Поскольку все современные гидравлические амортизаторы — газомаслянные, газ и масло могут смешиваться в процессе работы. Причина в том, что жидкость проходит через «узкости» (зазоры в клапанах, каналы, сверления) с очень большими скоростями и при пониженных давлениях, в результате чего возникает кавитация (образование пузырьков разрежения) и рост температуры. Кавитация не только разрушает детали амортизатора, но и резко снижает эффективность демпфирования, т.к. образовавшаяся пена, в отличие от масла, хорошо сжимаема.

Расположение амортизатора

Наиболее выгодное, с точки зрения работы, расположение амортизатора – как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность. Отклонение от перпендикуляра подвески на +/– 50 градусов снижает эффективность амортизатора до 68%.

Часто можно встретить амортизаторы с надетой на них пружиной (обычно на однотрубных стойках). Так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину.

Гидравлические рычажные амортизаторы

Применялись в автомобилестроении до 50х-60х годов. Были весьма эффективны и практически вечны (единственная изнашивающаяся деталь такого амортизатора — резиновые сальники на оси рычага, которые со временем начинают подтекать — легко заменяется, после чего амортизатор может проработать ещё несколько десятилетий), но дороги в производстве. На фото ниже — рычажный гидравлический амортизатор в передней подвеске ГАЗ М-21И (совмещён с верхним рычагом подвески).

Гидравлические двухтрубные амортизаторы

В 50-х годах получили распространение трубчатые амортизаторы, так называемого «авиационного типа», которые постепенно вытеснили рычажные. Двухтрубный амортизатор состоит из двух соосных (одна в одной) труб, внешняя из которых является корпусом, внутренняя заполнена рабочей жидкостью и в ней перемещается поршень с клапанами. Пространство между трубами заполнено запасом жидкости для охлаждения и компенсации утечек, а также воздухом — для компенсации изменения объёма (температурное расширение жидкости и вход-выход штока; рисунок А).

Такую же конструкцию имеют двухтрубные гидравлические амортизаторы с газовым подпором низкого давления («гидропневматические», рисунок В). Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (т.н. «газовый подпор», от 4 до 20 атм и более, в зависимости от назначения). Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Чем больше диаметр амортизатора, тем меньшее давление газового подпора необходимо. Оно также может различаться для передних и задних амортизаторов.

Газ под давлением уменьшает проблему аэрации (вспенивания) масла, но не решает ее целиком. Также газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. Возможность менять давление подпора делает такие амортизаторы более гибкими в настройке, чем обычные гидравлические.

Двухтрубные амортизаторы применяются в «гражданском» автомобилестроении с низкими нагрузками (под обычные хорошие дороги). В автоспорте не применяются, т.к. не соответствуют требованиям снижения неподрессоренных масс, стабильности, надежности и рабочего ресурса в условиях проведения спортивных мероприятий. Исключением является дрифтинг, где могут применяться двухтрубные амортизаторы с повышенным давлением компенсационного газа (около 6-8 атмосфер), т.к. соревнования проходят только на очень ровном дорожном покрытии и невысоких скоростях.

Преимущество газовых амортизаторов реально можно заметить только при эксплуатации в тяжелых условиях — на плохих дорогах, высоких скоростях, в жаркую погоду. При обычной «гражданской» эксплуатации распознать тип амортизатора по его поведению почти невозможно.

  • a1 — поршень и регулировочная П-образная гайка на нем;
  • a2 — донный клапан;
  • 6 — внешняя труба-резервуар (корпус амортизатора);
  • 5 — внутренняя труба (рабочий цилиндр);
  • поршень, 2, закрепленный на штоке, 1;
  • 7 — донный клапан;
  • 3 — направляющая штока;
  • 9 — верхнее и нижнее крепление.

  • b1 — регулировочный хвостовик;
  • b2 — поршень и регулировочный штырь;
  • 6 — внешняя труба-резервуар (корпус амортизатора);
  • 5 — внутренняя труба (рабочий цилиндр);
  • поршень, 2, закрепленный на штоке, 1;
  • 7 — донный клапан;
  • 3 — направляющая штока;
  • G — газ под низким давлением;
  • 9 — верхнее и нижнее крепление.

При сжатии амортизатора шток (1) складывается, и масляные потоки, находящиеся между донным (7) клапаном и поршнем (2) в рабочем цилиндре (5), без сопротивления проходят выше поршня. Одновременно масло, замещаемое штоком, вынуждено течь через донный клапан во внешнюю трубу-резервуар (6), заполненный воздухом (1 бар) или азотом (4-8 бар). Сопротивление, с которым сталкивается масло при прохождении через отверстия донного клапана, производит демпфирование сжатия.

При отбое шток выдвигается, и масло, находящееся выше поршня, вынуждено течь через поршень. Сопротивление, с которым оно сталкивается, создает демпфирование отбоя. Одновременно, немного масла перетекает из резервуара (6) через донный клапан в нижнюю часть рабочего цилиндра, чтобы компенсировать освободившийся объем штока.

Достоинства двухтрубных амортизаторов:

  • Относительная простота изготовления и ремонта, низкие требования к качеству изготовления.
  • Приемлемые рабочие характеристики (в том числе надёжность) для большинства применений в транспорте.
  • Отсутствие выступающих деталей — может устанавливаться внутри пружины подвески.
  • Малое давление внутри и соответственно требования к уплотнению штока, что обосновывает их низкую стоимость и дешевизну материалов.
  • При небольшом пропускании запаса масла в амортизаторе может хватить на несколько лет при полном сохранении работоспособности амортизатора (но ухудшении охлаждения).

Недостатки двухтрубных амортизаторов:

  • При высоких нагрузках (плохие дороги, бездорожье или спортивные заезды) возникает пенообразование, препятствующее охлаждению амортизатора. Перегретый амортизатор теряет свои характеристики и автомобиль становится опасно менее управляемым (говорят — «автомобиль поплыл», «стал валким», «заваливается в повороте»). При увеличении диаметра амортизатора удается повысить демпфирующие характеристики, одновременно снижая рабочее давление и, как следствие, температуру.
  • При движении в сложных условиях в данной конструкции амортизаторов (плохие дороги, бездорожье) высока вероятность возникновения кавитации, причем, чем ниже давление компенсационного газа, тем выше эта вероятность. Возникновение данного явления приводит к быстрому выходу из строя амортизаторов, а также повреждения других деталей подвески.
  • При износе характеристики амортизаторов данной конструкции ухудшаются очень плавно и незаметно для водителя, в следствии чего необходимо более тщательно контролировать их работоспособность.
  • На высоких скоростях из-за недостаточной скорости реакции амортизатора на неровности, управляемость автомобиля резко падет.
  • Несколько увеличивают вероятность возникновения аквапланирования.
  • При установке в подвеску автомобиля максимальный угол наклона без резкого снижения работоспособности 45° к вертикали. Перед установкой обязательна «прокачка» — для удаления пузырьков газа из рабочей полости.
  • Должен устанавливаться только корпусом вниз (рабочим штоком А вверх), что ухудшает характеристики подвески (увеличение неподрессоренных масс).
  • Хранить и перевозить необходимо только в вертикальном положении.

Однотрубные гидравлические амортизаторы с газовым подпором высокого давления

Однотрубный амортизатор представляют из себя трубу, заполненную рабочей жидкостью, в которой перемещается поршень с клапанами (т.н. схема De Carbon). Для компенсации изменения объёма рабочей жидкости (температурные и вход-выход штока) «дно» цилиндра заполнено газом, отделённым от рабочей жидкости плавающим поршнем-перегородкой. Давление газа, как правило около 18-30 атмосфер (для улучшения характеристик рабочей жидкости при нагреве и устранения вероятности возникновения кавитации).

Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы и диаметр поршня будет больше, что означает больший объем масла, более стабильные характеристики и лучшую теплоотдачу.

  • c1 — поршень и регулировочная кнопка;
  • c2 — плавающий разделительный поршень;
  • 5 — рабочий цилиндр (корпус амортизатора);
  • поршень, 2, закрепленный на штоке, 1;
  • 8 — разделительный плавающий поршень;
  • 3 — направляющая штока;
  • G — газ под высоким давлением;
  • 9 — верхнее и нижнее крепление.

Однотрубные амортизаторы при сжатии, в отличие от двухтрубных, не имеют резервуара для излишков масла, замещаемых поршнем (2). Это решено за счет изменения вместимости масла в рабочем цилиндре (5). Цилиндр не полностью заполнен маслом — в нижней его части находится азот под давлением 20-30 бар (G). Газ и масло разделены плавающим поршнем (8). Когда шток утапливается, плавающий поршень также двигается вниз. Увеличивается давление и в газовой, и в масляной секции. Масло, находящееся ниже рабочего поршня (2), вынуждено проходить через него выше. Сопротивление, возникающее при этом, создает демпфирование сжатия.

При отбое, когда шток выдвигается, масло, находящееся выше рабочего поршня, вынуждено течь через него ниже. Сопротивление, возникающее при этом, создает демпфирование отбоя. В то же время, часть штока выходит за пределы рабочего цилиндра и освободившееся место занимает расширяющийся в нижней части газ. Разделительный плавающий поршень перемещается вверх.

Достоинства однотрубных амортизаторов:

  • Данная конструкция является практически самой эффективной.
  • Стабильные показатели в самых разных дорожных условиях, при высоких нагрузках (разбитые дороги, полное бездорожье, спортивная езда и т.д.), а также наиболее высокую скорость реакции на внезапные неровности дорожного покрытия даже на высоких скоростях.
  • Характеристики очень стабильны за счет того, что компенсационный газ «F» отделен от жидкости плавающим поршнем «Е» и эффект вспенивания рабочего тела (масла) при работе, отсутствует полностью; за счет высокого давления газа и, как следствие, жидкости в данной конструкции кавитация не возникает даже при сверхвысоких нагрузках (ралли, движение в условиях бездорожья и т.д.).
  • Малые углы крена при вхождении автомобиля в повороты (по сравнению с двухтрубной конструкцией), на 5-20% уменьшается тормозной путь.
  • Благодаря более стабильному давлению автомобильных колес на дорожное покрытие, эффект аквапланирования возникает несколько позже по кривой разгона.
  • Такие амортизаторы не боятся наклонов, не требуют «прокачки» перед установкой и могут устанавливаться штоком вниз, что улучшает характеристики подвески за счет снижения неподрессоренных масс.
  • Стенка рабочего цилиндра имеет непосредственный контакт с воздухом, что улучшает охлаждение масла.
  • Поршень и цилиндр имеет большой диаметр, а жидкость больший объем — это увеличивает теплоемкость системы (нагрев происходит значительно медленнее).
  • Имеют 1.5-2,2 раза больший срок службы в сравнении с амортизаторами двухтрубной конструкции с теми же размерами.
  • Однотрубный амортизатор экономически более выгоден для владельца автомобиля, т.к. более редкая замена экономит суммы, сопоставимые со стоимостью самого амортизатора, несколько снижает время среднегодового стояния автомобиля в автосервисе и обеспечивает высокую безопасность движения на дороге.

Недостатки однотрубных амортизаторов:

  • Если компенсационная камера «F» находится прямо в рабочем цилиндре, то данный амортизатор имеет меньший ход по сравнению с двухтрубной конструкцией при одинаковых внешних размерах, однако уменьшение габаритов клапанных наборов и поршня значительно снижает эту величину.
  • Вынесение компенсационной камеры в отдельный элемент применяется только для отдельно взятых автомобилях в основном ориентированных на спортивную езду и в серийном производстве не используется.
  • Высокое давление в амортизаторе создаёт значительную выталкивающую силу на шток (десятки килограмм), что может требовать замены пружин подвески на более слабые.
  • Данный амортизатор очень критичен к повреждению (вмятинам) на внешней стенке цилиндра, это приведет к заклиниванию поршня и полному выходу из строя, в то время как двухтрубный амортизатор даже не заметит вмятины. Согласно статистке вероятность возникновения данных повреждений приближается к 0.01% относительно всего объема поставляемых амортизаторов, значительная часть случаев происходит при транспортировке или неквалифицированной установке в подвеску.
  • Высокая чувствительность однотрубных амортизаторов к температуре. Чем температура выше, тем выше давление газового подпора и жестче работает амортизатор.
  • Однотрубный амортизатор сложней в изготовлении чем двух трубный, поскольку высокое давление компенсационного газа накладывает значительно большие требования к качеству уплотнений, материалам и покрытиям деталей. Это обосновывает более высокую стоимость амортизатора.

Однотрубные амортизаторы с выносной компенсационной камерой

Своего рода эволюцией однотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет:

  • Не увеличивая размеры самого амортизатора, увеличить объем и газа, и масла, что серьезно влияет на температурный баланс (они более эффективно охлаждаются) и стабильность характеристик.
  • Иметь при тех же размерах бОльший рабочий ход.
  • Установить на пути масла, перетекающего из основного рабочего цилиндра в допкамеру, систему клапанов, которые будут играть роль клапана сжатия, как в двухтрубной конструкции. Отделив друг от друга клапана, работающие на сжатие и отбой, можно заложить много диапазонов регулировки и менять жесткость работы амортизатора для различных скоростей движения поршня, например малую, среднюю и большую.

Однотрубный амортизатор перевернутой конструкции

У некоторых производителей встречаются однотрубные амортизаторы, которые выглядят, как обычные амортизаторы, но с очень толстым «штоком», диаметр которого почти равен диаметру корпуса. Это амортизаторы такой же однотрубной конструкции, как и представленные выше (рис. C). Отличие заключается в том, что хромированным «штоком» таких амортизаторов на самом деле является корпус амортизатора (красная часть на рис. C), а видимым «корпусом» является корпус стойки, обеспечивающий и функцию пыльника. Реальный шток этих амортизаторов такой же тонкий, как и у традиционных однотрубных амртизаторов. Фактически, это такой же амортизатор, только перевернутый вверх ногами, а нижние и верхние крепежные элементы остались на своих местах.

Обычно, приводятся определенные преимущества такой конструкции, хотя на самом деле, она продиктована необходимостью: в подвеске типа МакФерсон, амортизатор является направляющей и испытывает нагрузки не только вдоль оси штока, как у классических амортизаторов, но и боковые. Поэтому, двухтрубные амортизаторы для подвески МакФерсон имеют более толстые штока. Но использовать толстый шток в амортизаторе однотрубной конструкции нет возможности — вытесняемому таким штоком маслу некуда деться, объем компенсационной камеры недостаточен. Поэтому, чтобы обеспечить необходимую жесткость однотрубного амортизатора с тонким штоком для боковых нагрузок, применяется перевернутый тип, в котором реальный корпус амортизатора движется относительно корпуса стойки, а реальный шток закреплен в нижней части и неподвижен.

Релаксационные амортизаторы

Релаксационные амортизаторы — перспективное направление развития гидравлических телескопических амортизаторов, построенное на основе эффекта сжатия (релаксации) жидкости в саморегулирующихся конструкциях. В той или иной степени этот эффект присущ всем гидравлическим амортизаторам. В релаксационных амортизаторах максимум эффекта сопротивления приходится на конец хода сжатия. В наибольшей степени релаксационный эффект проявляется на малых ходах и высокой частоте колебаний подвески. Амортизаторы релаксационного типа позволяют получить переменную характеристику сопротивления в зависимости от величины перемещения штока, что обеспечивает интенсивное гашение колебаний при малых ходах подвески (дорога с небольшими неровностями) и традиционную характеристику при больших ходах.

Дефекты в основном сводятся в две группы:

  • утечка жидкости из амортизатора по причине повреждения уплотнений штока или самого штока (грязью, коррозией), а также невысокого качества самих уплотнений;
  • механические поломки важных деталей — пружины, упругие шайбы, диски клапанов, поршневые кольца и т.д.

Трогаясь после длительной стоянки на сильном морозе, неразумно «преодолевать» участки разбитой дороги на повышенной скорости: загустевшее масло не способно продавливаться через каналы, сверления, и амортизатор оказывается «заблокирован». Необходимо постепенно прогревать амортизаторы на небольших неровностях.

Известны случаи, когда автолюбители покупали на рынке фальсифицированные амортизаторы, заправленные вместо масла водой! Замерзнув, она разрывает амортизатор.

Обычный двухтрубный амортизатор немного коварен. При небольшом подтекании жидкости его работа ухудшается не сразу — и водитель привыкает к меняющемуся (хотя и не в лучшую сторону) поведению автомобиля. В конце концов тот становится просто небезопасным — об этом нужно помнить.

Газовый амортизатор высокого давления об утечке жидкости заявляет быстро: под давлением газа разделительный поршень начинает приближаться к рабочему — вскоре вы услышите стуки от их соударения. Отказавшую газовую стойку выдает и появившийся крен автомобиля в ее сторону, так как при утечке жидкости газ расширяется, а его давление падает.

Материалы: http://carguts.ru/articles/ammo/

3 ≫

Амортизатор - демпфирующее устройство, являющееся важным компонентом шасси. Шасси автомобиля - главная составляющая, которая отвечает за его поведение на дороге.

Как известно, подвеска машины обеспечивает упругую связь между подрессоренными и неподрессоренными массами автомобиля. К первым относится кузов со всем содержимым, рама и двигатель, ко вторым – колеса, мосты и часть элементов самой подвески. Если от упругой связи отказаться, т.е. лишить автомобиль подвески, то все вертикальные перемещения колеса, катящегося по неровностям дороги, вызовут точно такие же по амплитуде перемещения той или иной части автомобиля и, соответственно, людей, находящихся в нем. Вам когда-нибудь доводилось ездить на телеге?

Так вот, автомобиль без подвески – то же самое, разве что воздух в шинах немного смягчит ход.

Амортизатор призван обуздать возникающий при работе упругого элемента подвески колебательный процесс. Мы уже разобрались в том, что помимо уменьшения раскачки кузова, т.е. улучшения плавности хода машины, его наличие позволяет оптимизировать прижатие колеса к дороге. Специальные исследования показали, что автомобиль с неисправными амортизаторами отдельных колес хуже разгоняется и имеет больший тормозной путь, а при маневрировании ухудшается его устойчивость.

Итак, для того что бы гасить колебания подвески или рассеивать энергию сжатого/растянутого упругого элемента были изобретены амортизаторы. Появились они на автомашинах давно. Как они выглядят сейчас, знают, наверное, все. Это обычно телескопические стойки с монтажными креплениями. Но амортизаторы не всегда были такими. Проследим эволюционный путь амортизатора.

С момента появления первых работоспособных автомобилей их создатели пытались решить две задачи: обеспечить комфорт водителя и пассажиров и удержать колеса на дороге для безопасного и динамичного движения. Так у автомобиля появился упругий элемент, выполняющий одновременно функцию направляющего устройства - листовая рессора.

Позже к ней добавилась пневматическая шина, что сделало езду на автомобиле ощутимо комфортнее. Однако это не решило вопроса удерживания колеса на дороге, что необходимо для непрерывной передачи всех сил между ними. В противном случае какой смысл в мощных двигателях, тягу которых невозможно полностью реализовать, четком рулевом механизме, который не имеет возможности в любой момент контролировать и управлять колесами.

Добавьте к этому то, что жесткость рессорной подвески первых автомобилей была очень высока, и получите эффект, который производила любая неровность, встречавшаяся на пути машины. От нее колесо подпрыгивало вверх, неизбежно передавая удар на раму и кузов, о чем потом напоминали водителю и его спутникам долго затухающие колебания. С этим надо было что-то делать. Поначалу, когда скорости были незначительными, заметили, что колебания гасятся за счет трения между листами рессор. Это навело на мысль оснастить подвеску дополнительным устройством, которое использует это физическое явление.

Они представляли собой два рычага, соединенные шарнирно болтом, один из которых опирался на раму, а другой был связан с подвеской. Между рычагами находились фрикционные диски, взаимное вращение которых обеспечивало нужное демфирование, а затягивая или ослабляя болт, можно было менять сопротивление амортизаторов. Такая конструкция была очень простой, но имела существенный недостаток в виде недолговечности и необходимости частой регулировки.

Однако конструкторская мысль не стояла на месте. Принцип действия амортизаторов - перевод одного вида энергии в другой - был известен, осталось только заменить сухое трение… "мокрым", при котором сопротивление движению оказывает протекающая через калиброванные отверстия или подпружиненные клапана жидкость. Это было реализовано в первых гидравлических амортизаторах так называемого рычажного типа, появившихся в тридцатые годы прошлого века.

В них рычаг, который часто выполнял функцию направляющего устройства, воздействовал на подпружиненный поршень при ходе отбоя подвески, который, в свою очередь, давил на жидкость, перетекающую через демфирующий клапан.

Этот клапан также имел свою пружину, регулировкой преднатяга которой можно было изменить характеристику амортизатора. При сжатии поршень создавал разряжение увлекал за собой жидкость, которая также проходила с сопротивлением через клапан. Казалось бы, вот оно решение проблемы, но кроме явных преимуществ в виде компактности, уже упомянутой возможности выполнять направляющие функции подвески и наличия внешней регулировки, рычажные амортизаторы имели существенные недостатки. К ним относятся массивность, сложность изготовления и большие внутренние силы на деталях амортизатора и его опорах на кузове или раме. Применялись амортизаторы одностороннего действия, которые работают только на отбой и не оказывают влияния на работу подвески при ходе сжатия.

Известны лопастные (крыльчатые) гидравлические амортизаторы

в которых демпфирование колебаний происходит за счет поворота лопастей с калиброванными отверстиями в корпусе, заполненном вязкой жидкостью. До классического гидравлического двухтрубного амортизатора двухстороннего действия был пройден длинный эволюционный путь.

Классический гидравлический амортизатор состоит из цилиндра, размещенного в трубе. Зазор между этими деталями образует компенсационную камеру. В цилиндр вставляется поршень, шток которого соединяется с неподвижной частью подрессоренной массы (рама, кузов авто). Низ внешней трубы связан с неподрессоренной массой автомобиля (мостом, рычагом независимой подвески). В поршне и в нижней части цилиндра имеются перепускные и разгрузочные клапаны, а также калиброванные отверстия.

Принцип действия классического амортизатора:

При ходе сжатия (колесо наезжает на выступ дорожного полотна) шток с поршнем вдвигается в цилиндр и амортизатор сжимается. При этом рабочая жидкость перетекает через отверстия в поршне в надпоршневую полость. Поскольку часть объема цилиндра теперь занимает вдвинувшийся шток, излишек жидкости через клапан сжатия в нижней части цилиндра выдавливается в компенсационную камеру. При ходе отбоя (колесо съезжает с выступа или проваливается в яму) процесс развивается в обратном порядке, только жидкость теперь идет через другие клапаны и перепускные отверстия с иной пропускной способностью. Поэтому сопротивление амортизатора при ходе сжатия и отбоя не одинаково: он легче сжимается, чем разжимается, не давая кузову раскачаться. При резких ударах колеса о дорогу сила сопротивления амортизатора ограничивается благодаря открытию разгрузочных клапанов, что снижает воздействие на подрессоренную массу.

Сейчас существует различные типы амортизаторов гидравлические, газо-маслянные, газовые, однотрубные, двухтрубные.

Все типы соответствуют тем задачам, что на них возложены, где - то это применение только в легковых авто, где то - езда на скоростных трассах, но для коммерческого транспорта – грузовиков, троллейбусов, автобусов, прицепов и полуприцепов самый подходящий - это классический тип – гидравлический двухтрубный, что выпускает Первоуральский Автоагрегатный завод.

Амортизаторы Первоуральского автоагрегатного завода

Амортизаторы Первоуральского автоагрегатного завода служат верой и правдой благодаря простоте конструкции, надежности, долговечности и эффективности работы. Покупайте классику и вы не ошибетесь.

Материалы: http://www.paaz.ru/chto-takoe-amortizatory/


Back to top