Что такое двигатель внутреннего сгорания

1 ≫

Все двигатели преобразуют какую-нибудь энергию в работу. Двигатели бывают разные – электрические, гидравлические, тепловые и т.д., в зависимости от того, какой вид энергии они преобразуют в работу. ДВС - двигатель внутреннего сгорания, это тепловой двигатель, в котором в полезную работу преобразуется теплота сгорающего в рабочей камере топлива, внутри двигателя. Также существуют двигателя с внешним сгоранием - это реактивные двигатели самолётов, рокет и т.д. в этих двигателях сгорание внешнее, поэтому они называются двигателями с внешним сгоранием.

Но простой обыватель чаще сталкивается с двигателем автомобиля и понимают под двигателем именно поршневой двигатель внутреннего сгорания. В поршневом ДВС, сила давления газов, возникающая при сгорании топлива в рабочей камере, воздействует на поршень, который совершает возвратно-поступательное движение в цилиндре двигателя и передаёт усилие на кривошипно-шатунный механизм, который преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Но это очень упрощенный взгляд на ДВС. На самом деле, в ДВС сосредоточены сложнейшие физические явления, пониманию которых посвятили себя многие выдающиеся ученые. Чтобы ДВС работал, в его цилиндрах, сменяя друг друга, происходят такие процессы, как подача воздуха, впрыск и распыление топлива, его смешивание с воздухом, воспламенение образовавшейся смеси, распространение пламени, удаление отработавших газов. На каждый процесс отводится несколько тысячных долей секунды. Добавьте к этому процессы, которые протекают в системах ДВС: теплообмен, течение газов и жидкостей, трение и износ, химические процессы нейтрализации отработавших газов, механические и тепловые нагрузки. Это далеко не полный перечень. И каждый из процессов должен быть организован наилучшим образом. Ведь из качества протекающих в ДВС процессов складывается качество двигателя в целом – его мощность, экономичность, шумность, токсичность, надежность, стоимость, вес и размеры.

Двигателя внутреннего сгорания бывают разные: 2-х танктные, 4-х тактные, дизельные, бензиновые, со смешенным питанием, карбюраторные, инжекторные и т.д. и это далеко не полный список! Как видите, вариантов двигателей внутреннего сгорания очень много, но если стоит затронуть классификацию ДВС, то для подробного рассмотрения всего объёма материала понадобится минимумм 20-30 страниц - большой объём, не так ли? И это только классификация.

Принципиальный ДВС автомобиля НИВА

1 - Шюп для замера уровня масла в картере

4 - Насос шестеренчатый

5 - Ведущая шестерня насоса

6 - Приводной вал НШ

7 - Подшипник скольжения (вкладыш)

8 - Вал коленчатый

9 - Манжета хвостовика коленчатого вала

10 - Болт для крепления шкива

11 - Шкив, служит для привода генератора, насоса водянного охлаждения

12 - Ремень криноременной передачи

13 - Ведущая звездочка КШМ

14 - Свездочка привода НШ

16 - Лобовая часть ДВС

17 - Натяжитель цепи

19 - Цепь привода ГРМ

20 - Клапан впускной

21 - Клапан выпускной

22 - Звездочка распределительного вала

23 - Корпус распределительного вала

24 - Вал распределительный ГРМ

25 - Пружина клапана

27 - Крышка заливная

29 - Втулка клапан

30 - Голова блока цилиндров

31 - Пропка системы охлаждения

32 - Свеча зажигания

33 - Прокладка головки блока цилиндров

35 - Корпус манжеты

37 - Полукольцо от осего смещения

38 - Крышка опоры коленчатого вала

40 - Блок цилиндров

41 - Крышка картера сцепления

42 - Поддон картера

Ни одна область деятельности несравнима с поршневыми ДВС по масштабам, количеству людей занятых в разработке, производстве и эксплуатации. В развитых странах деятельность четверти самодеятельного населения прямо или косвенно связана с поршневым двигателестроением. Двигателестроение, как исключительно наукоемкая область, определяет и стимулирует развитие науки и образования. Общая мощность поршневых двигателей внутреннего сгорания составляет 80 – 85% мощности всех энергоустановок мировой энергетики. На автомобильном, железнодорожном, водном транспорте, в сельском хозяйстве, строительстве, средствах малой механизации, ряде других областей, поршневой ДВС как источник энергии пока не имеет должной альтернативы. Мировое производство только автомобильных двигателей непрерывно увеличивается, превысив 60 миллионов единиц в год. Количество производимых в мире малоразмерных двигателей также превышает десятки миллионов в год. Даже в авиации поршневые двигатели доминируют по суммарной мощности, количеству моделей и модификаций и количеству установленных на самолеты двигателей. В мире эксплуатируется несколько сотен тысяч самолетов с поршневыми ДВС (бизнес-класса, спортивных, беспилотных и т.д.). В США на долю поршневых двигателей приходится около 70% мощности всех двигателей, установленных на гражданских летательных аппаратах.

Но со временем всё меняется и скоро мы увидим и будем эксплуатировать принципиально другие типы двигателей, которые будет иметь высокие эксплуатационные показатели, высокий КПД, простота конструкции и главное - экологичность. Да, всё верно, главным минусом двигателя внутреннего сгорания является его экологическая характеристика. Как бы не оттачивали работу ДВС, какие бы системы не внедряли, он всё равно оказывается существенное влияние на наше здоровье. Да, теперь можно с уверенностью сказать, что существующая технология моторостроения чувствует "потолок" - это такое состояние, когда та, или иная технология полностью исчерпала свои возможность, полностью выжата, всё что можно было сделать - уже сделано и с точки зрения экологии принципиально НЕ-ЧЕ-ГО уже не изменить в существующих типах ДВС. Стоит вопрос: нужно полностью менять принцип работы двигателя, его энергоноситель (нефтяные продукты) на что-то новое, принципиально иное (водород, электричество, энергия атома, гравитацию, инерцию и т.д.). Но, к сожалению, это дело не одного дня или даже года, нужны десятилетия.

Пока ещё не одно поколение ученых и конструкторов будут исследовать и совершенствовать старую технологию постепенно подходя всё ближе и ближе к стенке, через которую уже будет невозможно перескочить (физически это не возможно). Еще очень долго ДВС будет давать работу тем, кто его производит, эксплуатирует, обслуживает и продает. Почему? Всё очень просто, но в то же время эту простую истину далеко не все понимают и принимают. Главная причина замедления внедрения принципиально иных технологий - капитализм. Да, как бы это странно не звучало, но именно капитализм, та система, которая как кажется должна быть заинтересована в новых технологиях, тормозит развитие человечества! Всё очень просто - нужно зарабатывать. Как же быть с теми нефтяными вышками, нефтезаводами и доходами?

ДВС «хоронили» неоднократно. В разное время на смену ему приходили электродвигатели на аккумуляторах, топливные элементы на водороде и многое другое. ДВС неизменно побеждал в конкурентной борьбе. И даже проблема исчерпания запасов нефти и газа – это не проблема ДВС. Существует неограниченный источник топлива для ДВС. По последним данным, нефть может восстанавливаться, а что это значит для нас?

Характеристики ДВС

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рисунок слева), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике. Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Пунктирной линией на графике выше показаны более оптимальные характеристики двигателя.

Материалы: http://www.studiplom.ru/Technology-DVS/description_DVS.html

2 ≫

В наши дни на автомобили в основном устанавливается двигатель внутреннего сгорания. Специалисты-профессионалы отмечают достаточно сложное его устройство. Для того чтобы остановить свой выбор, при покупке автомобиля, на какой-то конкретной версии, необходимо использовать технические характеристики двигателя внутреннего сгорания для анализа устройства всего автомобиля.

Самый главный показатель поршневого двигателя внутреннего сгорания – это количество цилиндров. Их может быть, на серийных автомобилях, от 1 до 16. Этот фактор влияет на конструктивное устройство двигателя, а так же на мощность, она может быть различной при одинаковом количестве цилиндров.

Цилиндры могут располагаться рядно и под углом друг к другу. Когда они расположены под углом, относительно коленчатого вала с обеих сторон, то на характеристики двигателя внутренного сгорания влияет угол развала. При увеличении угла смещается вниз центр тяжести двигателя, что улучшает работу систем охлаждения и смазки, наблюдается улучшение динамических показателей, повышается инерционность. При уменьшении угла снижается вес и инерционность, но ухудшается температурный режим.

Применяется в автомобилестроении оппозитный двигатель с механизмом внутренного сгорания, угол развала цилиндров которого составляет 180°, при этом максимально проявляются преимущества и недостатки ДВС. При W-образной схеме задействуется четыре и более цилиндра, и включаются они в общий привод. Очень редко применяется рядно-V-образный тип двигателей, это синтез двух типовых разновидностей. Располагаясь последовательно, несколько цилиндров наклонены под определенным углом относительно друг друга, это способствует улучшению температурных характеристик.

Важно! Отличаются между собой эти типы двигателей внутренного сгорания весом и размерами. Увеличение количества цилиндров ведет к изменению всех характеристик: увеличивается рабочий объем, увеличивается его мощность, но и расход топлива увеличивается тоже.

Материалы, из которых изготавливают двигатели с механизмом внутреннего сгорания можно разделить на три основных группы:

  1. Чугун и другие сплавы железа – достигается большая прочность, но значительно увеличивается вес.
  2. Алюминий и сплавы – дают малый вес и среднюю прочность.
  3. Сплавы магния – малый вес при достаточно высокой прочности, но при этом значительно возрастает стоимость.

В основном работа двигателя внутреннего сгорания характеризуется тремя показателями: мощностью, крутящим моментом и числом оборотов коленчатого вала. Мощность обозначается лошадиными силами (л.с.), иногда выражается в киловаттах (кВт). Влияет она на общую динамику автомобиля, на его скорость и время разгона. Крутящий момент влияет на создание тягового усилия, обозначается ньютонометрами (нм), обеспечивает мягкость работы двигателя при переключении передач и обеспечивает ускорение автомобиля с низких оборотов. Показатель максимального числа оборотов коленчатого вала влияет на скоростной и динамический характер движения автомобиля.

Не менее важными являются такие характеристики мотора внутреннего сгорания:

  • тип применяемого топлива для двигателя внутреннего сгорания может быть бензин, газ или дизельное топливо. Марки топлива различаются октановым числом, оно должно соответствовать типу двигателя и его характеристикам. Использование несоответствующего топлива приводит к потере мощности и к снижению ресурса работоспособности двигателя;
  • расход топлива двигателя внутреннего сгорания разделяется на городской, загородный и смешанный. Обозначается количеством литров на сто километров пробега автомобиля;
  • расход моторного масла. Измеряется в литрах на тысячу километров пробега. Масла бывают синтетическими, полусинтетическими и минеральными, отличаются они густотой и вязкостью. Применение их регламентировано изменениями сезонных температур, зимой применяются масла с низкими обозначениями 0W40, 5W40, 10W40, а летом 15W40, 20W40. Трансмиссионные масла 70W90 или 95W100 использовать в двигатель нельзя, так как это приведет к его заклиниванию;
  • ресурсная прочность – этот параметр определяет периодичность проведения технического обслуживания. Обычно работы по техническому обслуживанию двигателя проводятся в период между 5000 и 30000 километров пробега. Имеется гарантийный и послегарантийный периоды технического обслуживания.
  • Двигатели внутреннего сгорания имеют ряд разнообразных особенностей конструктивного характера:
  • топливная система – может быть бензиновая и дизельная. Бензиновые двигатели при большем числе оборотов колен вала развивают большую мощность, а дизельные имеют большой крутящий момент и отличаются устойчивой работой;
  • на современных двигателях внутреннего сгорания применяется электронная система впрыска бензина (инжекторная), она показывает лучшие технико-экономические показатели, чем карбюраторная система. Из-за плохого смешивания бензовоздушной смеси карбюраторная система имеет низкий КПД, труднорегулируемая механическая регулировка приводят к перерасходу топлива;
  • система бензинового впрыска может быть одноточечного и многоточечного типа. Недостатком одноточечной системы есть то, что при резком уменьшении нагрузки происходит увеличение расхода топлива. Многоточечный тип имеет прямую и распределенную систему внутреннего впрыска. При этом создается равномернораспределенная смесь, что делает работу двигателя устойчивой на всех режимах. Но при прямом впрыске, хоть и наблюдается повышение мощности, ресурсной прочности и снижение расхода топлива значительно повышается стоимость, так как необходимо высококачественное топливо и наблюдаются провалы на малых оборотах в начале движения.

Эти недостатки исключаются применением комбинированного (двойного) впрыска. Системы используются одновременно, а электроника включает их по очереди, в зависимости от изменения нагрузочных и скоростных режимов.

Дизельные двигатели проще бензиновых с системой внутренного сгорания по конструкции, однако, система впуска намного сложнее и построена по другому принципу. В ее состав входит топливный насос высокого давления (ТНВД), а так же форсунки, которые впрыскивают топливо, под высоким давлением, прямо в камеру сгорания. Работает эта совместная система достаточно устойчиво и стабильно, но требует тщательного технического обслуживания и профессиональной регулировки.

Используя комбинацию топливного насоса высокого давления с насос-форсунками на базе общей топливной рампы высокого давления, где дизельное топливо сжимается и попадает в камеру сгорания методом впрыска. На данное время эта система показывает лучшие характеристики и обеспечивает малый расход топлива.

Клапана – часть газораспределительной системы, бывают впускные и выпускные. В разных конструкциях используется от 2 до 5 на каждый цилиндр. Чем больше клапанов, тем больше мощность, так как камера сгорания больше и быстрее наполняется топливом, это характеризуется увеличенным расходом топлива.

Дизельные двигатели внутреннего сгорания бывают с наддувом и без. Без наддува – атмосферные двигатели не имеют компрессора или других устройств обеспечивающих создание повышенного давления воздуха в системе впуска. С наддувом бывают компрессорные и турбинные, отличаются друг от друга типом привода.

Компрессорный наддув имеет механический привод и получает вращение от коленчатого вала двигателя внутреннего сгорания, в результате теряется часть мощности и увеличивается расход топлива. Турбонаддув имеет привод от системы крыльчаток, раскручивающихся под давлением выхлопных газов. Эта система надежнее, отличается простотой и почти исключает потери, но при этом снижается крутящий момент, ощутимо это на низких оборотах.

Система газораспределения двигателя внутреннего сгорания включает в себя распределительные валы и их приводы. Количество их зависит от конструкции двигателя, на каждый ряд один вал, но не более чем на 8 клапанов. Передача вращения от коленвала на распредвал осуществляется посредством цепи или ремня. Цепь создает много шума, но достаточно надежная, а ремень дешевле, но быстро изнашивается.

Фазы газораспределения – величина теоретически постоянная, и зависит от формы кулачка распредвала. По мере износа кулачка изменяются фазы, падает мощность и уменьшается моторесурс двигателя внутреннего сгорания.

И напоследок, если у вас ломался ДВС, то диагностика автомобилей с выездом просто необходима в этом случае.

Материалы: http://mashintop.ru/articles.php?id=28

3 ≫

НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "РУССКАЯ ТЕХНИЧЕСКАЯ ШКОЛА"

К основным характеристикам двигателя относятся мощность, крутящий момент и топливная экономичность.

Мощность двигателя.

В двигателе внутреннего сгорания давление газов, образующееся в результате сгорания топливовоздушной смеси, воздействует на днище поршня и перемещает поршень в цилиндре. Перемещая поршень, газы совершают полезную работу*, а двигатель развивает определённую мощность**.

*Работа (А) совершается тогда, когда на тело действует сила (F) и под воздействием этой силы тело движется (перемещается на расстояние S). Другими словами: Механическая работа прямо пропорциональна приложенной силе и пройденному пути (A=FS). Единица измерения работы в системе СИ – Джоуль (Дж). Один Джоуль равен одному Ньютону, умноженному на один метр (1Дж=Нm), т.е., если сила в один Ньютон перемещает тело массой в один кг на расстояние в один метр, то такая сила равна одному Джоулю.

**Мощность (Р) равна работе (А), совершённой за определённое время (единицу времени - t): P=A/t (Мощность=Работа/Время). Единица измерения мощности в системе СИ – Ватт (Вт). Один Ватт равен одному Джоулю, делённому на одну секунду (1Вт=1Дж/1сек), т.е., если работа в один Джоуль произведена за одну секунду, то такая работа воспроизводит мощность, равную одному Ватт. Внесистемной единицей измерения мощности является килограмм-сила, умноженная на один метр, делённый на одну секунду (кгс м/сек). 1кгс м/с = 9,81Вт. В технической литературе по автомобильной тематике также используется такая единица измерения, как лошадиная сила. Одна лошадиная сила равна 75 кгс м/с и 735,5 Вт.

Мощность, развиваемая газами внутри цилиндров двигателя, называется индикаторной мощностью (P i ). Индикаторная мощность не может быть полностью использована для движения автомобиля, так как часть этой мощности затрачивается на преодоление сил трения в самом двигателе (трение в подшипниках, между деталями цилиндропоршневой группы и газораспределительного механизма, взбалтывание масла и т.п.), а также привод вспомогательных механизмов (генератора, насоса охлаждающей жидкости и др.).

Мощность, которая может быть снята с коленчатого вала двигателя и использована для осуществления движения автомобиля, называется эффективной мощностью (Р ef ).

Эффективная мощность меньше индикаторной мощности на величину механических потерь. Механические потери удобно представлять в виде механического КПД двигателя (η).

КПД двигателя равен отношению эффективной и индикаторной мощности (η = Р ef /P i ). Величина КПД современных двигателей лежит в пределах 0,7 – 0,9. Величину КПД определяют экспериментально на специальных установках (тормозных установках барабанного или иного типа, развивающих заданное тормозное усилие).

Эффективная мощность двигателя описывается формулой: Р ef = p i V d n/2x60x75 (л.с.) , где в числителе:

p i – среднее индикаторное давление газов (кг/м.кв.), действующее на поршень;

V d – рабочий объём двигателя (м.куб.);

n – число оборотов двигателя (об/мин.);

2 – числовой коэффициент (для четырёхтактных двигателей = 2, для двухтактных = 1);

60x75 – числовой коэффициент, для перевода величины мощности из «кгс м/мин» в «лошадиные силы».

Из формулы следует, что эффективная мощность двигателя зависит от: 1) среднего индикаторного давления газов, действующего на поршень, 2) рабочего объёма двигателя и 3) числа рабочих циклов, осуществляемых за условное время работы двигателя, выраженное в оборотах коленчатого вала.

Среднее индикаторное давление газов (p i ) - условно постоянное давление которое, действуя на поршень в течение одного рабочего хода, совершает работу, равную индикаторной работе газов в цилиндре за рабочий цикл, т.е. p i =А i /V c (отношение индикаторной работы газов А i к единице рабочего объема цилиндра V c ).

Средние индикаторные давления при номинальной нагрузке у четырехтактных бензиновых двигателей 0.8 - 1.2 МПа, у четырехтактных дизелей 0.7 - 1.1 МПа, у двухтактных дизелей 0.6 - 0.9 МПа.

Рабочий объём двигателя V d равен сумме рабочих объёмов всех его цилиндров (V d = Σ n V c ). Рабочий объём одного цилиндра (V c ) равен произведению его диаметра (d) на ход поршня (h) – (V c = dh).

Число рабочих циклов, совершаемых двигателем за одну минуту, равно 2n/T, где n – частота вращения коленчатого вала, T - тактность двигателя (число тактов, совершаемых за рабочий цикл). Для четырёхтактного двигателя Т = 4, а число рабочих циклов - n/2.

Из приведённых выше величин постоянными, т.е. неизменными, зависящими от конструкции двигателя, являются только рабочий объём и тактность двигателя. Остальные величины переменные. Значения этих величин будут зависеть от режима работы и технического состояния двигателя. Из формулы можно видеть, что с ростом оборотов коленчатого вала и давления газов, действующих на поршень, мощность двигателя также будет расти. При этом функция мощности от скорости вращения КВ не является линейной, что иллюстрируется на графике (рис. 1).

Этот факт требует некоторого пояснения.

Дело в том, что величина давления рабочих газов зависит от полноты наполнения цилиндров новой порцией топливовоздушной смеси, скорости и полноты её сгорания и степени (коэффициента) последующей очистки цилиндров от отработавших газов. Степень наполнения и очистки цилиндров, равно как скорость и полнота сгорания топливовоздушной смеси, определяются конструкцией и настройкой газораспределительного механизма, систем впуска и выпуска, топливной системы, а также алгоритмом работы систем управления подачей топлива, зажиганием, наддувом воздуха и фазами газораспределения и лишь в малой степени связана со скоростью вращения коленчатого вала. Максимальная мощность развивается двигателем при достижении таких значений оборотов коленчатого вала, которым будут соответствовать оптимальные настройки и рабочие показатели перечисленных систем и механизмов, обеспечивающие необходимые условия смесеобразования, сгорания смеси и очистки цилиндров. Во всех других случаях (обороты выше или ниже) мощностные показатели двигателя будут ниже максимальных значений.

В технической литературе обороты, на которых достигается максимальная заявленная мощность двигателя, именуются «оборотами максимальной мощности».

Двигатели, максимальная мощность которых достигается на высоких скоростях вращения коленчатого вала (5000 об/мин и более), называются скоростными (высокооборотистыми). Двигатели, максимальная мощность которых достигается на низких скоростях вращения коленчатого вала (менее 5000 об/мин), называются тихоходными (низкооборотистыми). С точки зрения потребительского интереса к продукции автопрома, очень упрощённо, но можно говорить о том, что мощностные показатели двигателя определяют скоростные свойства автомобиля. То есть, высокооборотистый двигатель, при прочих равных условиях, обеспечит лучшие скоростные характеристики автомобиля, нежели низкооборотистый двигатель. Максимальной скорости автомобиль будет достигать на оборотах максимальной мощности. При достижении двигателем режима максимальной мощности двигатель начинает работать только на преодоление сил сопротивления движению, автомобиль не разгоняется.

Для сравнительной оценки различных двигателей с точки зрения совершенства рабочего процесса и конструктивного исполнения пользуются величиной «литровая мощность». Литровая мощность равна отношению мощности двигателя к его рабочему объёму (P L = P ef /V d ). Данная величина показывает, какая мощность может быть «снята» с одного литра рабочего объёма двигателя. Чем больше литровая мощность тем, при прочих равных параметрах, меньше относительные габариты и удельная масса двигателя, тем выше его технико-конструктивные показатели. Литровая мощность современных моторов лежит в пределах 15 – 37 кВт/л - для бензиновых двигателей, и 6 – 22 кВт/л - для дизелей.

Крутящий момент

При работе двигателя на его коленчатом вале развивается крутящий момент, который через механизмы трансмиссии передаётся на ведущие колёса автомобиля и приводит автомобиль в движение. Крутящий момент (M k ) равен произведению силы (F) на плечо её действия (r) и измеряется в ньютонах, умноженных на метр (H x m) или в килограмм силах, умноженных на метр (кгс x м).

В двигателе силой действия является давление газов. Плечом действия силы является кривошип коленчатого вала. Чем выше давление газов, действующее на поршень, и больше радиус кривошипа, тем больший крутящий момент развивает двигатель. Величина давления рабочих газов зависит от ряда условий, рассмотренных в предыдущем подразделе (Мощность двигателя). Радиус кривошипа определяется конструкцией двигателя.

Крутящий момент двигателя растёт с увеличением оборотов коленчатого вала и достигает максимального значения на т.н. "оборотах максимального крутящего момента". Обороты коленчатого вала, соответствующие оборотам максимального крутящего момента, для разных типов двигателей лежат в пределах 1500 – 3000 об/мин (дизели) и 3000 – 4500 об/мин (бензиновые моторы). «Привязка» максимального крутящего момента к оборотам коленчатого вала, как и в случае с мощностью, обусловлена настройкой газораспределительного механизма мотора его впускного и выпускного тракта, а также системы питания и управления двигателем.

Мощность и крутящий момент двигателя связаны формулой: M k = 716,2 P ef /n (кгс м);

Крутящий момент передаётся трансмиссией на ведущие колёса автомобиля и определяет силу тяги ведущих колёс: F t = M k x c x η/r, где F t – сила тяги; M k – момент крутящий; c – суммарное передаточное число трансмиссии; η – КПД трансмиссии (0,88 – 0,95); r – радиус ведущих колёс.

С точки зрения потребительского интереса к продукции автопрома, упрощённо, но можно говорить о том, что крутящий момент определяет тяговые характеристики автомобиля. Чем больший крутящий момент развивает двигатель, тем выше тяговые усилия на ведущих колёсах. Быстрый рост крутящего момента двигателя указывает на хорошую разгонную динамику автомобиля благодаря интенсивному увеличению силы тяги ведущих колесах.

Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше двигатель приспособлен к изменению дорожных условий (тем реже придется переключать передачи).

Большими крутящими моментами обладают малооборотистые моторы.

Топливная экономичность

Экономичность работы автомобильного двигателя измеряется количеством топлива в граммах, израсходованного на каждую единицу мощности за единицу времени (один час) и называется «удельным расходом топлива» (g e г/кВт час). Расход топлива увеличивается с ростом оборотов коленчатого вала и зависит от совершенства конструкции двигателя и его технического состояния. Суммарный (общий) расход топлива характеризуется расходом топлива в килограммах за один час работы и называется «часовым расходом топлива» (G T кг/ч). Удельный расход топлива может быть определён по формуле g e = G T 1000/ P ef (г/кВт ч).

Материалы: http://rtsh.ru/characteristic.html


Back to top