Как работает турбина на дизельном двигателе

1 ≫

Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. Моторы с турбонаддувом в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.

Главной задачей устройства является нагнетание воздуха в цилиндры дизельного ДВС под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Устройство турбины

Турбина имеет в основе ротор (крыльчатку), который закреплен на оси и заключен в специальный корпус. Постоянный контакт всех элементов турбины с раскаленными газами обуславливает необходимость изготовления ротора и корпуса турбины из особых жаропрочных материалов.

Крыльчатка и ось вращаются в противоположных направлениях с высокой частотой, в результате чего осуществляется плотный прижим одного элемента к другому. Поток отработавших газов проникает в выпускной коллектор, после чего оказывается в специальном канале. Данный канал находится в корпусе турбонагнетателя. Корпус имеет своеобразную форму-улитку. После прохождения улитки, отработавшие газы разгоняются и подаются на ротор. Так осуществляется вращение турбины.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Ось турбокомпрессора

Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи моторного масла из системы смазки двигателя. С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.

Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.

Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.

Турбояма и турбоподхват

Крыльчатка турбины и компрессорное колесо закреплены на одной общей оси. По этой причине наблюдается определенная зависимость, которая заключается в увеличении подачи воздуха компрессором только с ростом оборотов турбины. Специалисты выделяют понятие турбоямы (турболаг), что означает задержку прироста мощности дизеля при резком нажатии на акселератор.

Крыльчатка турбины раскручивается выхлопными газами для создания эффективного давление наддува турбокомпрессором. При определенных условиях турбина может вращаться с очень большой частотой, что зависит от конструктивных особенностей корпуса устройства и интенсивности потока отработавших газов.

Необходимость проверить турбину дизельного двигателя своими руками может возникнуть по ряду причин. Выполнение диагностики турбокомпрессора на СТО.

Сделать это можно после снятия турбины. Также на некоторых автомобилях доступ можно получить не снимая турбокомпрессор.

Турбокомпрессор бензинового или дизельного двигателя изначально имеет . На практике турбина может выходить из строя гораздо быстрее, требуя регулярной.

Турбонаддув: устройство турбокомпрессора. . Такая турбина способна быстрее выходить на наддув при открытии дроссельной заслонки, а итоговый результат в.

Механический нагнетатель и турбокомпрессор. Турбина представляет собой ротационный двигатель.

Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор.

Материалы: http://krutimotor.ru/turbokompressor-na-dizele/

2 ≫

Задача увеличения мощности двигателя внутреннего сгорания волновала инженеров и конструкторов с самого момента изобретения ДВС. И кстати они неплохо преуспели в этом деле. На сегодняшний день современные двигатели внутреннего сгорания значительно превосходят своих первых прототипов.

Если говорить конкретно об увеличении производительности бензинового двигателя (атмосферного), то есть три основных пути его развития:

  • Увеличить объем двигателя. Каким образом это можно осуществить? Первый вариант это увеличить объем цилиндров, второй – увеличить их количество. Однако подобный способ имеет ряд существенных недостатков, таких как повышенный расход бензина, увеличение размеров, а также веса двигателя.
  • Повысить количество оборотов коленвала за единицу времени - весьма сложно реализуется из-за конструкции самого двигателя. Более того такой вид тюнинга не лучшим образом скажется на общей производительности движка из-за потерь при впуске и прочих операциях (о том, что такое чип-тюнинг двигателя, его плюсах и минусах можете узнать, перейдя по данной ссылке).
  • При помощи улучшения показателей сгораемости топливной смеси. Для осуществления, казалось бы, нужно лишь добиться более эффективной подачи воздуха в цилиндры. Что реализуется при помощи турбины, которая и позволяет увеличить давление воздуха, поступающего в камеру сгорания. Эта модернизация, в свою очередь, и позволяет обеспечить лучшее сгорание топливной смеси в цилиндрах и значительно повысить мощность движка.

В этой статье мы рассмотрим принцип работы турбины на бензиновом двигателе, а также плюсы и минусы его использования.

По сути, все очень просто: при помощи специального компрессора воздух под давлением подается в двигатель автомобиля. Как правило, давление нагнетаемое компрессором не превышает 80 процентов от стандартной схемы заполнения камеры сгорания, которая осуществляется в атмосферном двигателе вследствие разряженности, возникающей в цилиндре.

Устройство турбинного нагнетателя зависит от его типа - он может быть как с приводом, использующим энергию отработанных газов, так и с приводом от самого двигателя. Основные детали турбины:

  • Турбинные и компрессорные колеса;
  • Вал;
  • Крыльчатка с лопастями;
  • Патрубки.

Принцип работы турбины на бензиновом двигателе (использующей энергию отработавших газов) прост: газы поступают в турбину, под их давлением раскручивается ротор. Вращаясь вместе с валом, колесо компрессора засасывает воздух из атмосферы и подает его в камеры сгорания мотора.

Отработавшие газы после того, как раскрутили ротор, выходят в глушитель через патрубок. В зависимости от используемого компрессора, турбинный нагнетатель может увеличить давление воздуха в цилиндре на величину от 20 до 85 процентов! При этом мощность двигателя возрастает на 10-55 процентов. Если на автомобиле стоит турбина с приводом от двигателя, компрессор работает не за счет энергии газов, а за счет механического привода от самого двигателя. Собственно, остальной принцип работы турбины на бензиновом двигателе тот же, что и в прошлом варианте: раскручиваясь, колесо подает воздух в двигатель.

Однако при этом часть мощности двигателя затрачивается на то, чтобы обеспечить работу нагнетателя, как следствие, падает мощность, передаваемая на колеса, и повышается расход топлива.

Также в конструкции турбинного нагнетателя присутствует такой элемент, как интеркулер. Его предназначение - принудительное охлаждение воздуха. Дело в том, что при нагревании плотность воздуха падает (а при компрессии воздух может разогреваться до 170-190 градусов), а вместе с ней падают и показатели наполнения цилиндров воздухом.

Преимущества использования турбинных нагнетателей:

  • Главное преимущество заключается собственно в том, ради чего их и ставят - сравнительное увеличение мощности ДВС. То есть при одном и том же рабочем объеме силовой агрегат, оборудованный нагнетателем, выдает больше мощности, чем двигатель без него.
  • Также несомненным плюсом является значительное снижение количества выбрасываемых в атмосферу вредных веществ (опять же по сравнению с атмосферным двигателем, развивающим такую же мощность).
  • Дополнительным плюсом использования турбины является то, что она позволяет максимально оптимизировать другие характеристики двигателя, что дает возможность, к примеру, снизить частоту переключения передач при езде по городу или холмистой местности.

Основные недостатки применения турбины:

  • Для того чтобы из-за высоких показателей сгораемости в цилиндре не происходила фактическая детонация топливовоздушной смеси, пришлось несколько снизить степень сжатия.
  • Также значительно возрастают требования, предъявляемые к характеристикам используемого бензина - для турбированных двигателей подходят лишь те марки, которые обладают наиболее высоким октановым числом.
  • К тому же в турбодвигателе не допускается применение масел, рассчитанных на атмосферные двигатели. Более того масло для турбированных моторов должно быть самого наилучшего качества.
  • В дополнение к вышеописанным недостаткам, к элементам конструкции турбины пришлось добавить интеркулер, который принудительно охлаждает воздух для достижения максимальной плотности воздуха.

Однако же все вышеперечисленные недостатки никак не сказываются на популярности применения турбин на бензиновых двигателях по всему миру. Более того с каждым годом их спрос лишь увеличивается.

Также смотрим видео, принцип работы турбины автомобиля - особенно будет полезно для начинающих автолюбителей:

Материалы: http://auto-pos.ru/ekspluatatsiya/dvigatel/100-printsip-raboty-turbiny-na-benzinovom-dvigatele.html

3 ≫

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

Материалы: http://tractorreview.ru/dvigateli/ustroystvo/printsip-rabotyi-turbinyi-na-dizelnom-dvigatele.html


Back to top