1 ≫
-
Регулятор напряжения
Для чего генератору нужен регулятор?
Генераторная установка предназначена для обеспечения питанием потребителей, входящих в систему электрооборудования автомобиля, и зарядки аккумуляторной батареи при работающем двигателе. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля и работы двигателя не происходил прогрессивный разряд аккумуляторной батареи или ее перезаряд, а питание потребителей осуществлялось напряжением и током требуемой величины.
Кроме того, напряжение в бортовой сети автомобиля, питаемой генераторной установкой, должно быть стабильно в широком диапазоне изменения частоты вращения и нагрузок.
ЭДС индукции в соответствии с законом Фарадея, зависит от скорости перемещения проводника в магнитном поле и величины магнитного потока:
где с - постоянный коэффициент, зависящий от конструкции генератора;
ω - угловая скорость ротора (якоря) генератора:
Ф - магнитный поток возбуждения.
Поэтому напряжение, вырабатываемое генератором, зависит от частоты вращения его ротора и интенсивности магнитного потока, создаваемого обмоткой возбуждения. В свою очередь мощность магнитного потока зависит от величины тока возбуждения, который изменяется пропорционально частоте вращения ротора, поскольку ротор выполнен в виде вращающегося электромагнита.
Кроме того, ток, поступающий в обмотку возбуждения, зависит от величины нагрузки, отдаваемой в данный момент потребителям бортовой сети автомобиля. Чем больше частота вращения ротора и ток возбуждения, тем большее напряжение вырабатывает генератор, чем больше ток нагрузки, тем меньше генерируемое напряжение.
Пульсация напряжения на выходе из генератора недопустима, поскольку это может привести к выходу из строя потребителей бортовой электрической сети, а также перезаряду или недозаряду аккумулятора. Поэтому использование на автомобилях в качестве источника электроэнергии генераторных установок обусловило использование специальных устройств, поддерживающих генерируемое напряжение в приемлемом для работы потребителей диапазоне. Такие устройства называются реле-регуляторы напряжения.
Функцией регулятора напряжения является стабилизация вырабатываемого генератором напряжения при изменении частоты вращения коленчатого вала двигателя и нагрузки в бортовой электросети.
Наиболее просто контролировать величину вырабатываемого генератором напряжения изменением величины тока в обмотке возбуждения, регулируя тем самым мощность создаваемого обмоткой магнитного поля. Можно было бы использовать в качестве ротора постоянный магнит, но управлять магнитным полем такого магнита сложно, поэтому в генераторных установках современных автомобилей применяются роторы с электромагнитами в виде обмотки возбуждения.
На автомобилях для регулирования напряжения генератора применяются регуляторы напряжения дискретного типа, в основу работы которых положен принцип действия различного рода реле. По мере развития электротехники и электроники, регуляторы генерируемого напряжения претерпели существенную эволюцию, от простых электромеханических реле, называемых вибрационными регуляторами напряжения, до бесконтактных интегральных регуляторов, в которых полностью отсутствуют подвижные механические элементы.
Вибрационный регулятор напряжения
Рассмотрим работу регулятора на примере простейшего вибрационного (электромагнитного) регулятора напряжения.
Вибрационный регулятор напряжения (рис. 1) имеет добавочный резистор Rо, который включается последовательно в обмотку возбуждения ОВ. Величина сопротивления резистора рассчитана так, чтобы обеспечить необходимое напряжение генератора при максимальной частоте вращения. Обмотка регулятора ОР, намотанная на сердечнике 4, включена на полное напряжение генератора.
При неработающем генераторе пружина 1 оттягивает якорь 2 вверх, удерживая контакты 3 в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты 3 и якорь 2 подключена к генератору, минуя резистор Rо.
С увеличением частоты вращения ток возбуждения работающего генератора и его напряжение растут. При этом увеличивается сила тока в обмотке регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленного значения, силы магнитного притяжения якоря 2 к сердечнику 4 недостаточно для преодоления силы натяжения пружины 1 и контакты 3 регулятора остаются замкнутыми, а ток в обмотку возбуждения проходит, минуя добавочный резистор.
При достижении напряжения генератора значения размыкания Uр сила магнитноо притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора напряжения размыкаются. При этом в цепь обмотки возбуждения включится добавочный резистор, и ток возбуждения, достигший к моменту срабатывания реле значения Iр, начнет падать.
Уменьшение тока возбуждения влечет за собой уменьшение напряжения генератора, а это, в свою очередь, приводит к уменьшению тока в обмотке ОР. Когда напряжение уменьшится до значения замыкания Uз, сила натяжения пружины преодолеет силу магнитного притяжения якоря к сердечнику, контакты вновь замкнутся, и ток возбуждения увеличится. При работающем двигателе и генераторе этот процесс периодически повторяется с большой частотой.
В результате происходит пульсация напряжения генератора и тока возбуждения. Среднее значение напряжения Uср определяет напряжение генератора. Очевидно, что это напряжение зависит от силы натяжения пружины реле, поэтому изменяя натяжение пружины можно регулировать напряжение генератора.
В конструкцию вибрационных регуляторов (рис. 1, а) входит ряд дополнительных узлов и элементов, назначение которых - обеспечить повышение частоты колебания якоря с целью уменьшения пульсации напряжения (ускоряющие обмотки или резисторы), уменьшение влияния температуры на величину регулируемого напряжения (добавочные резисторы из тугоплавких металлов, биметаллические пластины, магнитные шунты), стабилизацию напряжения (выравнивающие обмотки).
Недостатком вибрационных регуляторов напряжения является наличие подвижных элементов, вибрирующих контактов, которые подвержены износу, и пружины, характеристики которой в процессе эксплуатации меняются.
Особенно сильно эти недостатки проявились в генераторах переменного тока, у которых ток возбуждения почти в два раза больше, чем в генераторах постоянного тока. Использование раздельных ветвей питания обмотки возбуждения и двухступенчатых регуляторов напряжения с двумя парами контактов не решали проблему полностью и приводили к усложнению конструкции регулятора, поэтому дальнейшее совершенствование шло, прежде всего, по пути широкого использования полупроводниковых приборов.
Сначала появились контактно-транзисторные конструкции, а затем и бесконтактные.
Контактно-транзисторные регуляторы напряжения являются переходной конструкцией от механических регуляторов к полупроводниковым. При этом транзистор выполнял функцию элемента, прерывающего ток в обмотку возбуждения, а электромеханическое реле с контактами управляло работой транзистора. В таких регуляторах напряжения сохранялись электромагнитные реле с подвижными контактами, однако, благодаря использованию транзистора ток, протекающий через эти контакты, удалось значительно уменьшить, увеличив тем самым срок службы контактов и надежность работы регулятора.
В полупроводниковых регуляторах ток возбуждения регулируется с помощью транзистора, эмиттерно-коллекторная цепь которого включена последовательно в обмотку возбуждения.
Транзистор работает аналогично контактам вибрационного регулятора. При повышении напряжения генератора выше заданного уровня транзистор запирает цепь обмотки возбуждения, а при снижении уровня регулируемого напряжения транзистор переключается в открытое состояние.
Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети (дополнительных диодов).
С увеличением частоты вращения ротора напряжение генератора повышается. Когда оно начинает превышать уровень 13,5…14,2 В, выходной транзистор в регуляторе напряжения запирается, и ток через обмотку возбуждения прерывается.
Напряжение генератора падает, транзистор в регуляторе отпирается и снова пропускает ток через обмотку возбуждения.
Чем выше частота вращения ротора генератора, тем больше время запертого состояния транзистора в регуляторе, следовательно, тем сильнее снижается напряжение генератора.
Этот процесс запирания и отпирания регулятора происходит с высокой частотой. Поэтому колебания напряжения на выходе генератора незначительны, и практически можно считать его постоянным, поддерживаемым на уровне 13,5…14,2 В.
Конструктивно регуляторы напряжения могут выполняться в виде отдельного прибора, устанавливаемого раздельно с генератором, или интегральными (интегрированными), устанавливаемыми в корпусе генератора. Интегральные регуляторы напряжения обычно объединяются с щеточным узлом генератора.
Ниже приведены принципиальные схемы подключения и работы полупроводниковых регуляторов напряжения различных типов и конструкций.
Главная страница
Электрооборудование автомобилей
КГБПОУ «Каменский агротехнический техникум»
Материалы: http://k-a-t.ru/mdk.01.01_elektro/23-generator/index.shtml
2 ≫
-
От работы регулятора напряжения (реле-регулятора) зависит состояние аккумуляторной батареи, правильная работа генератора и системы зажигания, состояние и нормальная работа приборов и устройств автомобиля. Ниже рассматриваются принципы работы различных схем автомобильных регуляторов напряжения и генераторных установок.
Принцип работы регуляторов напряжения
Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузок, автоматически включать в бортовую сеть силовую цепь генераторной установки или обмотку возбуждения.
По своей конструкции регуляторы делятся на бесконтактные транзисторные, контактно-транзисторные и вибрационные (реле-регуляторы). Разновидностью бесконтактных транзисторных регуляторов являются интегральные регуляторы, выполняемые по специальной гибридной технологии, или монолитные на монокристалле кремния. Несмотря на столь разнообразное конструктивное исполнение, все регуляторы работают по единому принципу.
Напряжение генератора зависит от трех факторов — частоты вращения его ротора, силы тока нагрузки и величины магнитного потока, создаваемого обмоткой возбуждения, который зависит от силы тока в этой обмотке. Любой регулятор напряжения содержит чувствительный элемент, воспринимающий напряжение генератора (обычно это делитель напряжения на входе регулятора), элемент сравнения, в котором напряжение генератора сравнивается с эталонной величиной, и регулирующий орган, изменяющий силу тока в обмотке возбуждения, если напряжение генератора отличается от эталонной величины.
В реальных регуляторах эталонной величиной может быть не обязательно электрическое напряжение, но и любая физическая величина, достаточно стабильно сохраняющая свое значение, например, сила натяжения пружины в вибрационных и контактно-транзисторных регуляторах.
В транзисторных регуляторах эталонной величиной является напряжение стабилизации стабилитрона, к которому напряжение генератора подводится через делитель напряжения. Управление током в обмотке возбуждения осуществляется электронным или электромагнитным реле. Частота вращения ротора и нагрузка генератора изменяются в соответствии с режимом работы автомобиля, а регулятор напряжения любого типа компенсирует влияние, этого изменения на напряжение генератора воздействием на ток в обмотке возбуждения. При этом вибрационный или контактно-транзисторный регулятор включает в цепь и выключает из цепи обмотки возбуждения последовательно резистор (в двухступенчатых вибрационных регуляторах при работе на второй ступени закорачивает эту обмотку на массу), а бесконтактный транзисторный регулятор напряжения периодически подключает и отключает обмотку возбуждения от цепи питания. В обоих вариантах изменение тока возбуждения достигается за счет перераспределения времени нахождения переключающего элемента регулятора во включенном и выключенном состояниях.
Если сила тока возбуждения должна быть, например, для стабилизации напряжения, увеличена, то в вибрационном и контактно-транзисторном регуляторах время включения резистора уменьшается по сравнению с временем его отключения, а в транзисторном регуляторе время включения обмотки возбуждения в цепь питания увеличивается по отношению к времени ее отключения.
На рис. 1 показано влияние работы регулятора на силу тока в обмотке возбуждения для двух частот вращения ротора генератора n1 и п2, причем частота вращения п2 больше, чем п1. При большей частоте вращения относительное время включения обмотки возбуждения в цепь питания транзисторным регулятором напряжения уменьшается, среднее значение силы тока возбуждения уменьшается, чем и достигается стабилизация напряжения.
С ростом нагрузки напряжение уменьшается, относительное время включения обмотки увеличивается, среднее значение силы тока возрастает таким образом, что напряжение генераторной установки остается практически неизменным.
На рис. 2 представлены типичные регулировочные характеристики генераторной установки, показывающие, как изменяется сила тока в обмотке возбуждения при неизменном напряжении и изменении частоты вращения или силы тока нагрузки. Нижний предел частоты переключения регулятора составляет 25—30 Гц.
Генераторные установки с вентильными генераторами не используют каких-либо включающих устройств в силовой цепи. Для нормального функционирования их регулятора напряжения к нему должны быть подведены напряжение бортовой сети (напряжение генератора) и выводы цепи обмотки возбуждения генератора. Напряжение генератора действует между выводами "+" и "М" ("масса") генератора (у генераторов автомобилей ВАЗ соответственно "30" и "31"). Выводы обмотки возбуждения обозначены индексом "Ш" ("б7" у генераторов ВАЗ) .
На рис. 3 изображены принципиальные схемы генераторных установок. В скобках даны обозначения выводов генераторных установок автомобилей ВАЗ . На рисунках цифрами обозначены: 1 - генератор; 2 - обмотка возбуждения; 3 - обмотка статора; 4 - выпрямитель с вентильным генератором; 5 - выключатель; 6 - реле контрольной лампы; 7 - регулятор напряжения; 8 - контрольная лампа; 9 - помехоподавляющий конденсатор; 10 - трансформаторно-выпрямительный блок,; 11 - аккумуляторная батарея; 12 - размагничивающая обмотка у генераторов смешанного магнитно-электромагнитного возбуждения; 13 - резистор подпитки обмотки возбуждения от аккумулятора.
Различают два типа не взаимозаменяемых регуляторов напряжения. В одном типе (рис. 3, а, з) выходной коммутирующий элемент регулятора напряжения соединяет вывод обмотки возбуждения генератора с "+" бортовой сети, в другом типе (рис. 3, б, в) — с "—" бортовой сети. Транзисторные регуляторы напряжения второго типа являются более распространенными.
Чтобы на стоянке аккумуляторная батарея не разряжалась, цепь обмотки возбуждения генератора (см. рис. 3, а, б) замыкается через выключатель зажигания. Однако, при этом контакты выключателя коммутируют силу тока до 5 А, что неблагоприятно сказывается на их сроке службы. Поэтому через выключатель зажигания замыкается лишь цепь управления регулятора напряжения (см. рис . 3, в), потребляющая ток в доли ампера. Прерывание тока в цепи управления переводит электронное реле регулятора в выключенное состояние, что не позволяет току протекать в обмотку возбуждения. Однако, применение выключателя зажигания в цепи генераторной установки снижает ее надежность и усложняет монтаж на автомобиле.
Кроме того, падение напряжения в выключателе зажигания и других коммутирующих или защитных элементах, включенных в цепь регулятора (штекерные соединения, предохранители), влияет на уровень поддерживаемого регулятором напряжения и частоту переключения его выходного транзистора (см. рис. 3, а—в), что может сопровождаться миганием ламп осветительной и светосигнальной аппаратуры, колебанием стрелок вольтметра и амперметра.
Поэтому более перспективной является схема рис. 3, д. В этой схеме обмотка возбуждения имеет свой дополнительный выпрямитель, состоящий из трех диодов (в пятифазной системе генератора — из пяти диодов). К выводу "+" этого выпрямителя, который обозначен индексом "Д", и подсоединяется обмотка возбуждения генератора. Схема допускает разряд аккумуляторной батареи малыми токами по цепи регулятора напряжения. При длительной стоянке рекомендуется снимать наконечник провода с клеммы "+" батареи.
Подвозбуждение генератора от аккумуляторной батареи вводится через контрольную лампу 8. Небольшая сила тока, поступающая в обмотку возбуждения через эту лампу от аккумуляторной батареи, достаточна для возбуждения генератора и в то же время не может существенно влиять на разряд аккумуляторной батареи. Обычно параллельно контрольной лампе включают резистор 13, чтобы даже в случае перегорания контрольной лампы генератор мог возбудиться. Контрольная лампа (см. рис. 3, д) является одновременно и элементом контроля работоспособности генераторной установки. На стоянке при включении замка зажигания контрольная лампа загорается, так как в нее поступает ток аккумуляторной батареи через обмотку возбуждения генератора и регулятор напряжения.
После пуска двигателя генератор на клемме "Д" развивает напряжение, близкое по величине напряжению аккумуляторной батареи, и контрольная лампа погасает. Если этого при работающем двигателе не происходит, значит генераторная установка напряжения не развивает, т. е. неисправна.
С целью контроля работоспособности (см. рис. 3, а) введены реле с нормально замкнутыми контактами, через которые получает питание контрольная лампа 8. Эта лампа загорается после включения замка зажигания и погасает после пуска двигателя, так как под действием напряжения генератора, к средней точке обмотки статора которого подключено реле, оно разрывает свои нормально замкнутые контакты и отключает контрольную лампу 8 от цепи питания. Если лампа при работающем двигателе горит, значит генераторная установка неисправна. В некоторых случаях обмотка реле контрольной лампы подключается к выводу фазы генератора. Обмотка возбуждения (рис. 3, е) включена на среднюю точку обмотки статора генератора, т. е. питается напряжением, вдвое меньшим, чем напряжение генератора.
При этом приблизительно вдвое снижаются и величины импульсов напряжения, возникающих при работе генераторной установки, что благоприятно сказывается на надежности работы полупроводниковых элементов регулятора напряжения. Резистор 13 (см. рис. 3, е) служит тем же целям, что и контрольная лампа, т.е. обеспечивает уверенное возбуждение генератора.
На автомобилях с дизельными двигателями может применяться генераторная установка на два уровня напряжения 14/28 В. Второй уровень 28 В используется для зарядки аккумуляторной батареи, работающей при пуске ДВС. Для получения второго уровня используется электронный удвоитель напряжения или траисформаторно-выпрямительный блок (ТВБ) (рис. 3, г). В системе на два уровня напряжения регулятор стабилизирует только первый уровень напряжения — 14 В. Второй уровень возникает посредством трансформации и последующего выпрямления ТВБ переменного напряжения генератора. Коэффициент .трансформации трансформатора ТВБ близок к 1.
В некоторых генераторных установках зарубежного и отечественного производства регулятор напряжения поддерживает напряжение не на силовом выводе генератора "+", а на выводе его дополнительного выпрямителя (рис. 3, ж). Схема является модификацией схемы рис. 3, д с устранением ее недостатка — разряда аккумуляторной батареи через схему регулятора при длительной стоянке. Такое исполнение схемы возможно, потому что разница напряжения на выводе "+" и "Д" невелика. На рис. 3, ж показана схема пятифазного генератора с размагничивающей обмоткой в системе возбуждения. Эта обмотка действует встречно с обмоткой возбуждения и расширяет рабочий диапазон генераторных установок со смешанным магнито-электромагнитным возбуждением по частоте вращения. По этой схеме выполняются и вентильные генераторы с электромагнитным возбуждением в трехфазном исполнении. В этом случае схема содержит 9 диодов (6 силовых и 3 дополнительных) и не содержит размагничивающей обмотки.
В схеме рис. 3, з лампа контроля работоспособности генераторной установки включена на реле, питающееся от генератора со стороны переменного тока. Реле является одновременно реле блокировки стартера, содержит встроенный внутрь выпрямитель и срабатывает, если генератор развивает переменное напряжение. Выводы переменного тока генератора подключаются и на выводы тахометра. Реле-регуляторы, работающие в комплекте с генераторами постоянного тока, кроме стабилизации напряжения, осуществляют автоматическое включение генератора, когда напряжение генератора больше напряжения батареи, и отключение его, когда напряжение генератора меньше напряжения батареи, а также защиту генератора от перегрузки. Следовательно, ток генератора должен поступать потребителям через схему реле-регулятора — обмотку ограничителя тока и реле обратного тока (рис. 4).
В настоящее время на комплектацию автомобилей поступают, в основном, генераторные установки с бесконтактными транзисторными регуляторами, количество вибрационных и контактно-транзисторных регуляторов, находящихся в эксплуатации, сокращается.
Материалы: http://www.sampayalnik.ru/auto/rn.html
3 ≫
-
Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.
Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.
Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.
Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.
На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.
Таблица номиналов элементов
- C1 – 0,33мкФ напряжение не ниже 16В;
- R1, R2 – 10 кОм 2Вт;
- R3 – 100 Ом;
- R4 – переменный резистор 33 кОм;
- R5 – 3,3 кОм;
- R6 – 4,3 кОм;
- R7 – 4,7 кОм;
- VD1 .. VD4 – Д246А;
- VD5 – Д814Д;
- VS1 – КУ202Н;
- VT1 – КТ361B;
- VT2 – КТ315B.
Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.
В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.
Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.
В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.
Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.
Навигация по записям
Тиристорный регулятор напряжения простая схема, принцип работы : 20 комментариев
Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке «а» до 1/2 полупериода (до 90 эл. градусов) напряжение на выходе регулятора будет равным практически максимальному, а уменьшаться начнет только при «а» > 1/2 (>90). На графике — красным по серому начертано! Половина полупериода — не половина напряжения.
У данной схемы один плюс — простота, но фаза на управляющих элементах может привести к непростым последствиям. Да и помехи наводящиеся в электросети тиристорной отсечкой немалые. Особенно при большой нагрузке, что ограничивает область применения данного устройства.
Я вижу только одно: регулировать нагревательные элементы и освещение в складских и подсобных помещениях.
На первом рисунке ошибка, 10 мс должно соответствовать — полупериоду, а 20 мс соответствует периоду сетевого напряжения.
Добавил, график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишите про регулировочную характеристику когда нагрузкой является выпрямитель с емкостным фильтром? Тогда да, конденсаторы будут заряжаться на максимуме напряжения и диапазон регулирования будет от 90 до 180 градусов.
подобные схемы собирал…все работают безупречно, только больше нравится на кт 117
Залежи советских радиодеталей есть далеко не у каждого. Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например, 10RIA40M для КУ202Н)?
Тиристор КУ202Н сейчас продают меньше чем за доллар (не знаю, производят ли или старые запасы распродают). А 10RIA40M дорогой, на алиэкспрессе его продают примерно за 15$ плюс доставка от 8$. 10RIA40M имеет смысл использовать только когда нужно отремонтировать устройство с КУ202Н, а КУ202Н не найти.
Для промышленного применения более удобны тиристоры в корпусах TO-220, TO-247.
Два года назад делал преобразователь на 8кВт, так тиристоры покупал по 2,5$ (в корпусе TO-247).
Это и имелось в виду, если ось напряжения (почему-то помечена Р) провести, как на 2-м графике, то станет яснее с градусами, периодами и полупериодами приведенными в описании. Осталось убрать знак переменного напряжения на выходе (оно уже выпрямлено мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продают сейчас на радиорынках действительно за копейки, причем в исполнении 2У202Н. Кто в теме, поймет, что это военное производство. Наверное распродаются складские НЗ, которым все сроки вышли.
На рынке, если брать с рук могут среди новых подложить и выпаянную деталь.
Быстро проверить тиристор, например КУ202Н можно простым стрелочным тестером, включенным на измерение сопротивлений по шкале в единицы ом.
Анод тиристора соединяем на плюс, катод на минус тестера, в исправном КУ202Н утечки быть не должно.
После замыкания управляющего электрода тиристора на анод стрелка омметра должна отклониться, и остаться в таком положении после размыкания.
В редких случаях такой метод не срабатывает, и тогда для проверки понадобится низковольтный блок питания, желательно регулируемый, лампочка от фонарика, и сопротивление.
Вначале устанавливаем напряжение блока питания и проверяем светится ли лампочка, затем последовательно с лампочкой, соблюдая полярность соединяем наш тиристор.
Лампочка должна загореться лишь после кратковременного замыкания анода тиристора с управляющим электродом через резистор.
При этом резистор нужно подбирать, исходя из номинального открывающего тока тиристора и напряжения питания.
Это самые простейшие методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов.
кратковременно проверку выдерживают без сопротивления
На выходе напряжение не выпрямлено мостом.Оно выпрямлено только для схемы управления.
На выходе переменка,мост выпрямляет только для схемы управления.
Я бы назвал не регулирование напряжения, а регулирование мощности. Это стандартная схема регулятора освещения, которую раньше собирали почти все. И про радиатор к тиристору загнули. В теории конечно можно, но в практике думаю тяжело обеспечить тепло обмен между радиатором и тиристором для обеспечения 10А.
А какие сложности с теплообменом у КУ202? Вкрутил торцевым болтом в радиатор и все! Если радиатор новый, точнее, резьба не разболтана, даже КТП мазать не надо. Площадь стандартного радиатора (иногда и в комплекте шли), как раз и расчитана на нагрузку 10 А. Никакой теории, сплошная практика. Единственно, что радиаторы должны были находится на открытом воздухе (по инструкции), а при таком подключении сети — чревато. Поэтому закрываем, но ставим кулер. Да, мостовые друг к другу не прислоняем.
Вполне согласен с регулированием отдаваемоей мощности в нагрузку. Тиристор, конечно, не нужно ставить в предельные режимы. А так, моя любимая схема. даже использовал успешно для регулировки в первичной обмотке трансформатора.
Подскажите, что за конденсатор С1 -330нФ?
Наверное правильнее будет написать C1 — 0,33мкФ, можно устанавлиявать керамический или пленочный на напряжение не меньше 16В.
Всем самого доброго! Сначала собирал без транзисторов схемы… Одно плохо — регулировочное сопротивление грелось и выгорал слой графитовой дорожки. Потом собрал эту схему на кт. Первая неудачно — вероятно из-за большого усиления самих транзисторов. Собрал на МП с усилением около 50. Заработала без проблем! Однако есть вопросы…
Я тоже собирал без транзисторов,но ничего не грелось.Это было два резистора и конденсатор,В последствии убрал и конденсатор.Фактически остался переменник между анодом и управляющим,ну и естественно мостик.Использовал для регулировки мощности паяльника,причем как на 220 вольт,так и на первичку трансформатора для паяльника на 12 вольт и все работало и не грелось.Сейчас до сих пор в кладовке лежит в исправном состоянии.У Вас возможно была утечка в конденсаторе между катодом и управляющим для схемы без транзисторов.
Собрал на МП с усилением около 50. Работает! Но стало больше вопросов…
Номиналы R4 и R5 явно перепутаны. Никто не собирал схему в железе?
Материалы: http://hardelectronics.ru/tiristornyj-regulyator-napryazheniya.html