≪
-
HONDA VTEC: электронная система изменения фаз газораспределения и высоты подъема клапанов
Именно так характеризуют свое детище инженеры компании HONDA, когда говорят о системе VTEC. Аббревиатура VTEC расшифровывается как Variable Valve Timing and Lift Electronic Control, что означает «электронная система изменения фаз газораспределения и высоты подъема клапанов». Как видно из названия, в ее компетенцию непосредственно входит задача регулирования режима работы газораспределительного механизма.
Впервые эту систему компания HONDA стала устанавливать на двигателях болидов «Формулы-1″, называемых еще лабораториями на колесах. Дебют серийного автомобиля, оснащаемого двигателем с газораспределительным механизмом VTEC, состоялся в 1989 году. Это была HONDA Integra. Автомобиль имел удивительный двигатель, с которого снимали необыкновенно большую для серийных экземпляров в безнаддувном исполнении литровую мощность в 100 л.с./литр, при этом он характеризовался хорошей тягой на низких оборотах, имел высокие показатели топливной экономичности и низкие показатели токсичности выхлопных газов. По сути дела, инженеры сумели объединить в одном двигателе два диаметрально противоположных подхода в конструировании моторов. От низкооборотного высокомоментного двигателя, использующегося на автомобилях с большой грузоподъемностью, он получил хороший крутящий момент на низах, а от высокооборотного спортивного, развивающего мощность тем большую, чем больше скорость вращения коленчатого вала — высокую мощность. Удачный симбиоз! Это был первый в мире двигатель позволяющий изменять в процессе движения параметры работы газораспределительного механизма, такие как момент открытия/закрытия и высоту подъема клапанов, обеспечивая тем самым автомобилю оптимальные характеристики для ежедневного использования и спортивного режима движения. С разработкой газораспределительного механизма VTEC компания HONDA установила качественно новый стандарт в производстве двигателей внутреннего сгорания.
Каковы же основные принципы работы системы VTEC? Разберем этот вопрос более подробно. Если провести сравнительный анализ внешних скоростных характеристик различных двигателей, то нетрудно заметить, что у одних максимум крутящего момента достигается на низких оборотах (в диапазоне 1800-3000 об/мин), у других — на более высоких (в диапазоне 3000-4500 об/мин). Объясняется данный факт тем, что эффективное наполнение цилиндров топливо-воздушной смесью, а значит и получение высокого крутящего момента, возможно только при определенных оборотах и зависит от конструкции впускного тракта и настройки газораспределительного механизма. Иными словами, темперамент двигателя практически полностью определяется существующими фазами газораспределения, которые задаются профилем кулачков распредвала. Поясним вышесказанное на примере.
Представим себе двигатель, который работал бы на оборотах 20 об/мин, соответственно впускные и выпускные клапана задействовались бы 10 раз в минуту, т. е. довольно редко. Для снятия с такого двигателя максимального момента на данных оборотах, впускной клапан должен открываться в самом начале такта всасывания, когда поршень начинает двигаться от ВМТ (верхняя мертвая точка), и закрываться в момент прихода поршня в НМТ (нижняя мертвая точка). Аналогичным образом должен работать и выпускной клапан, т. е. никаких задержек или опережений в работе клапанного механизма не допустимо, иначе крутящий момент упадет. В этом случае наполнение цилиндров свежим зарядом будет наиболее эффективным. Если теперь увеличить частоту вращения коленчатого вала нашего двигателя до 4000 об/мин, впускной и выпускной клапана в этом случае будут открываться и закрываться уже 2000 раз в минуту или 33 раза в секунду, т. е. довольно часто. В таком режиме работы времени на всасывание поршнем свежей порции заряда остается очень мало. К тому же в силу инерции топливо-воздушной смеси только к моменту когда поршень достигнет НМТ ее скорость, а значит и расход через проходное сечение впускных клапанов достигнут максимума, но в этот момент впускной клапан закроется и, таким образом, основная порция свежего заряда не попадет в цилиндры, наткнувшись на преждевременно закрытый клапан — двигатель начнет «задыхаться». В результате мощность, снимаемая с такого мотора, будет весьма незначительна, а максимальные обороты невелики. Это полностью заслуга существующих фаз газораспределения. Можно было бы настроить их совсем по иному, например, для улучшения наполнения цилиндров рабочей смесью на высоких оборотах впускной клапан заставить открываться немного раньше до прихода поршня в ВМТ, а закрываться немного позже после прохода поршнем НМТ. Для улучшения очистки цилиндров от отработавших газов на высоких оборотах выпускной клапан заставить открываться немного раньше до прихода поршня в НМТ, а закрываться немного позже после прохождения им ВМТ. В этом случае пик крутящего момента будет достигаться на более высоких оборотах, а значит и возрастет мощность нашего двигателя. В реальных же условиях производства конструкторы силовых агрегатов вынуждены усреднять регулировку фаз газораспределения как говорят «на все случаи жизни», выбирая при этом определенный профиль кулачков распредвала.
Такой подход не является оптимальным. Чтобы мотор работал в условиях максимально приближенных к идеальным на любых оборотах и создана система VTEC. Двигатели HONDA с системой VTEC имеют специальный газораспределительный механизм, распредвал которого имеет различные кулачки для низких и высоких оборотов коленчатого вала двигателя, чем достигается различный момент открытия/закрытия и высота подъема клапанов. Таким образом, обеспечивается стабильность работы на низких и средних оборотах и высокая мощность на высоких. При необходимости система VTEC превращает обыкновенный двигатель пассажирского автомобиля в мощный силовой агрегат, дающий почувствовать себя за штурвалом настоящего спортивного болида.
На сегодняшний день существует несколько разновидностей системы VTEC. Самая первая появившаяся на HONDA Integra называлась DOHC VTEC, затем были созданы SOHC VTEC, SOHC VTEC-E, 3-stage SOHC VTEC, Hyper VTEC. Самая последняя разработка компании в области создания систем управления работой газораспределительного механизма называется i-VTEC, или интеллектуальная система VTEC. Ниже более подробно остановимся на описании конструкции и работы системы DOHC VTEC так как она была первой и позволила получить невиданную для безнаддувных двигателей серийных автомобилей удельную мощность. Кстати, и по сей день по этому показателю двигателям HONDA нет равных во всем мире.
Основой для конструирования DOHC VTEC и всех последующих систем электронного изменения момента и степени открытия клапанов стал широко применяемый и хорошо зарекомендовавший себя 4-клапанный газораспределительный механизм. Но в отличие от остальных (за исключением Hyper VTEC), в системе DOHC VTEC для каждого ряда клапанов (впускных и выпускных) предусмотрено устройство отдельного распредвала. На каждые два клапана приходиться три кулачка на распределительном валу. Боковые два предназначены для работы двигателя на низких и средних оборотах, центральный — на высоких. Кулачки воздействуют на клапана не непосредственно, а через так называемые рокера, которых тоже три на два клапана. Все три рокера оборудованы гидравлически управляемыми поршеньками, которые при наличии управляющего воздействия сдвигаются и соединяют их в единое целое. Средний рокер оборудован специальной пружиной, которая обеспечивает постоянный контакт кулачка с рокером на низких и средних оборотах. При работе двигателя на малых оборотах рокера не заблокированы и каждый из них совершает независимое движение по закону описываемому соответствующим кулачком. При этом средний кулачок хотя и вращается вместе с остальными, но в работе газораспределительного механизма участия не принимает. Как только двигатель перейдет на режим высоких оборотов, электронный «мозг» системы отдаст команду на исполняющее устройство, в результате давление масла заставит поршеньки в рокерах начать перемещаться, что приведет к блокировке последних. Таким образом, все элементы этой группы станут подконтрольными одному центральному кулачку, который теперь самостоятельно станет управлять работой обоих клапанов.
Система SOHC VTEC, в отличие от рассмотренной выше, имеет один распредвал и используется только для впускных клапанов. Эффективность работы такой конструкции несколько ниже чем у DOHC VTEC, однако она конструктивно более проще и обеспечивает двигателю меньшие габариты и массу.
Основная задача, ставившаяся при создании системы SOHC VTEC-E, была максимально снизить расход топлива и улучшить экологические показатели работы двигателя. Чего, собственно говоря, и достигли. Достигли за счет того, что на малых оборотах двигатель работает на обедненной топливо-воздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Попав туда рабочая смесь интенсивно завихряется, благодаря чему обеспечивается устойчивое ее сгорание. При увеличении оборотов срабатывает система VTEC и, только тогда, оба клапана начинают совместную работу. Удельная мощность двигателей с этой системой зачастую меньше аналогичных по объему без системы VTEC.
Газораспределительный механизм 3-stage SOHC VTEC представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех вышеописанных систем эта имеет не два режима работы, а три. В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности.
Система контроля работы газораспределительного механизма Hyper VTEC была разработана специально для установки на 4-тактные мотоциклетные двигатели. Основной ее особенностью является наличие гидравлического привода механизма включения в работу клапанов, что позволяет избавиться от необходимости установки дополнительного ряда коромысел (рокеров) и обеспечить непосредственное взаимодействие кулачков распредвала с толкателями клапанов. На малых и средних оборотах работают по одному из двух впускных и выпускных клапанов, приходящихся на цилиндр. По мере увеличения числа оборотов в работу подключаются еще два клапана, тем самым удовлетворяя возрастающую потребность двигателя в эффективном наполнении его цилиндров горючей смесью на высоких оборотах.
Конструкция нового газораспределительного механизма i-VTEC предполагает использование помимо основной системы VTEC дополнительную систему VTC (Variable Timing Control), непрерывно регулирующую момент начала открытия впускных клапанов. Фазы открытия впускных клапанов задаются в зависимости от нагрузки двигателя и регулируются посредством изменения угла установки впускного распределительного вала относительно выпускного. Применение системы VTC на ряду с VTEC позволяет эффективнее наполнять цилиндры двигателя топливо-воздушной смесью, а также улучшить полноту ее сгорания, что выражается в увеличении мощности двигателя на 20 %, крутящего момента на 10 %, снижении расхода топлива и уменьшении вредных выбросов на 10-20 %.
Оставить комментарий
Вы должны авторизоваться для отправки комментария.
Материалы: http://avto.win7ka.ru/honda-vtec-elektronnaya-sistema-izmeneniya-faz-gazoraspredeleniya-i-vyisotyi-podema-klapanov/
2 ≫
-
Инженеры известного автогиганта HONDA разработали систему изменения фаз газораспределения, которая управляется электронным способом. Эту систему, которая получила название VTEC, сегодня можно увидеть практически на всех двигателях внутреннего сгорания японских автомобилей HONDA. Так при помощи этой системы можно управлять процессом наполнения топливно-воздушной смеси, который происходит в камерах сгорания. В зависимости от количества оборотов двигателя система способна обеспечить один из трех режимов: экономичный режим – на низких оборотах, максимальный крутящий момент – на средних оборотах и максимальную мощность – на максимальных оборотах.
Система VTEC была впервые установлена на агрегаты болидов «Формулы-1», которые также назывались "лабораториями на колесах". Позже этой системой был оснащен серийный автомобиль, премьера которого состоялась в 80-ых годах 20го столетия. Так Honda Integra поразила всех не только своим видом, но и первоклассными техническими характеристиками:
- Во-первых, он имел на то время редкий по своим возможностям двигатель, который выдавал в безнаддувном исполнении мощность в 100 лошадиных сил
- Во-вторых, система двигателя отличалась от остальных хорошими показателями тяги при низких оборотах и высокими показателями экономичности расхода топлива. Более того, это был один из первых автомобилей, который выбрасывал минимальное количество токсичных выхлопных газов в атмосферу
Известно, что японским инженерам удалось соединить в одно целое два противоположных мотора: низкооборотный высокомоментный двигатель со спортивным высокооборотным агрегатом. История возникновения и развития двигателей DOHC.Так новый агрегат вырабатывал хороший крутящий момент на низких оборотах, как обычно это происходило на грузовом транспорте, во-вторых, двигатель выдавал высокую мощность, которая получалась от вращения коленчатого вала, как на спорт-карах. При поездке на новом автомобиле водитель мог с легкостью менять режимы работы, тем самым, выбирая самый оптимальный. Новинка могла работать не только в классическом, но и в спортивном режиме.
У одних двигателей крутящий момент будет достигаться на низких оборотах от 1 800-3 000 оборотов в минуту. Другие вырабатывают крутящий момент на более высоких оборотах, чье количество может достигать 3 000-4 500 оборотов в минуту. Из этого следует вывод, что высокий крутящий момент и эффективное распределение топливно-воздушной смеси в цилиндре происходит только при определенном количестве оборотов. Кроме того, данные факторы зависят от особенностей настроек газораспределительного механизма, а также конструкции впускного тракта. То есть, фазы газораспределения, которые диктуются профилем кулачков распределительного вала, полностью влияют на показатели мощности двигателя.
К примеру, двигатель работает на низких оборотах, скажем, 20 оборотов в минуту. Следовательно, впускные и выпускные клапана активны редко, около 10 раз в минуту. Чтобы снять с подобного двигателя максимальный момент на таких оборотах нужно, чтобы впускной клапан открывался в самом начале такта всасывания, то есть, в момент передвижения поршня от верхней мертвой точки. После впускной клапан должен закрываться в тот момент, когда поршень придет в нижнюю мертвую точку. Выпускной клапан должен работать точно таким же образом. В случае его опережений или, наоборот, задержек, крутящий момент может упасть. Если это произошло, то цилиндр нужно наполнить свежим зарядом. Теперь можно увеличить частоту вращения коленчатого вала агрегата, например, до 4 000 оборотов в минуту. В этом случае впускной и выпускной клапана будут активны, они уже открываются и закрываются 2 000 раз в минуту. При таком режиме работы поршню не хватает времени на всасывание достаточной порции заряда. Кроме того, из-за инерции топливно-воздушная смесь не в полном объеме поступает в цилиндр. Дело в том, что в момент достижения поршнем нижней мертвой точки скорость и расход топливно-воздушной смеси можно назвать максимальным, поэтому впускной клапан закрывается. В таких случаях двигатель автомобиля не способен выработать максимальные обороты и высокую мощность.
Стоит отметить, что подобные проблемы можно избежать при помощи фаз газораспределения. Например, если впускной клапан будет открываться чуть раньше до прихода поршня в верхнюю мертвую точку и закрываться чуть позже того, как поршень пройдет в нижнюю мертвую точку, цилиндры будут намного лучше наполняться рабочей смесью. В этом случае мощность двигателя станет намного выше и можно ожидать максимальных оборотов. Известно, что сегодня автопроизводители разрабатывают силовые установки, которые имеют универсальную регулировку фаз газораспределения, которая подойдет, так сказать, на все случаи жизни.
Конечно, такой подход автопроизводителей нельзя было назвать самым оптимальным. Так инженеры японского автоконцерна решили данную проблему при помощи новой системы VTEC. Двигатель, оснащенный подобной системой, имеет специальный газораспределительный механизм. Так, при помощи распределительного вала, который обладает различными кулачками для низких и высоких оборотов коленчатого вала агрегата, двигатель достигает разные моменты открытия и закрытия клапанов, а также высоту их подъема. Система способствует обеспечению стабильной работы на низких и средних оборотах, и высокой мощности – на высоких оборотах. Кроме того, при желании водитель может переключиться в спортивный режим работы и почувствовать себя настоящим гонщиком.
Сегодня система оборотов коленчатого вала имеет множество разновидностей. Так, на первом серийном автомобиле HONDA Integra была установлена DOHC VTEC. Со временем появились такие модели, как SOHC VTEC-E, SOHC VTEC, Hyper VTEC и 3-stage SOHC VTEC. Относительно недавно японцы разработали интеллектуальную систему управления работой газораспределительного механизма i-VTEC.
Что касается первой модели системы DOHC VTEC, то ей, до сих пор, не придумали аналога. Известно, что эта система установлена на кабриолете S2000, оснащенном 2,0-литровым двигателем мощностью до 125 лошадиных сил с 1 литра рабочего объема. Пока этот автомобиль никто в подобных показателях не превосходит.
В конструкции первой системы DOHC VTEC имеется 4-клапанный газораспределительный механизм, как и на последующих моделях. Все же есть одно значительное отличие. На первой модели системы имеется устройство отдельного распределительного вала, которое предусмотрено для работы каждого клапана. На распредвале каждого клапана есть три кулачка. Два боковых кулачка способствуют оптимальному режиму работы двигателя на низких и средних оборотах, а центральный кулачок отвечает за эффективную работу на высоких оборотах. Всего приходится по 3 кулачка на каждые 2 клапана. Они воздействуют на клапана через рокера, которые оборудованы гидравлически управляемыми маленькими поршнями. Поршни в свою очередь при воздействии сдвигаются и периодически соединяются друг с другом. У среднего рокера есть специальная пружинка, при помощи которой происходит постоянный контакт кулачка и рокера при работе на низких и средних оборотах. На низких оборотах рокера активны в отличие от среднего кулачка, который вращается, но пока в газораспределительном процессе не задействован. Происходит совсем иная картина, когда двигатель вырабатывает высокие обороты. В этом случае маленькие поршни в рокерах начинают перемещаться из-за давления масла, рокера блокируются. Теперь за работу всех элементов отвечает средний, или центральный, кулачок, от которого теперь зависит работа всех клапанов.
Давайте рассмотрим систему SOHC VTEC, которая имеет чуть иной принцип работы. В этом случае есть только один распределительный вал, который используется только для впускных клапанов. Из-за такой конструкции эффективность работы двигателя с такой системой будет сравнительно ниже, чем у DOHC VTEC. С другой стороны, SOHC VTEC имеет довольно-таки простую конструкцию, а также небольшой вес и размер.
Система SOHC VTEC-E имеет также свои плюсы.
- Во-первых, при ее использовании заметно сокращается расход топлива
- Во-вторых, в атмосферу выбрасывается меньше токсических выхлопных газов.
Как удалось достичь таких показателей японцам?
Да очень просто! Они выяснили, что при работе на низких оборотах двигатель потребляет мало топливно-воздушной смеси, которая поступает всего лишь через один входной клапан. После попадания смеси в цилиндр происходит благодаря ее постоянному движению по кругу стабильное сгорание. Когда же обороты увеличиваются, то срабатывает система, что приводит к началу совместной работы всех клапанов. Стоит отметить, что двигатели с этой системой имеют удельную мощность меньше, чем двигатели без VTEC.
В системе 3-stage SOHC VTEC инженеры из Японии соединили возможности всех предыдущих моделей. Главным преимуществом этой системы является то, что она имеет три режима работы, а не два. В зависимости от количества оборотов двигателя система способна обеспечить один из трех режимов: экономичный режим – на низких оборотах, максимальный крутящий момент – на средних оборотах и максимальную мощность – на максимальных оборотах.
Система Hyper VTEC разрабатывалась специально для 4-тактных мотоциклетных двигателей. В этом случае клапаны включаются при помощи гидравлического привода механизма. Таким образом, этой системе не нужны дополнительны рокера. На низких оборотах задействован один из впускного или выпускного клапана. Чем больше становится оборотов, тем больше клапанов работает. Таким образом, удовлетворяется потребность двигателя в горючей смеси на высоких оборотах, когда происходит наполнение цилиндра.
Самой последней моделью системы является i-VTEC, которая имеет интеллектуальный механизм. В этом случае используется не только универсальная система, но и система Variable Timing Control, которая регулирует начало открытия впускных клапанов. Фазы открытия впускных клапанов полностью зависят от нагрузки двигателя. Они обычно регулируются в тот момент, когда угол установки впускного распредвала изменяется в отношении выпускного распредвала. Такая система газораспределительного механизма обеспечивает эффективное наполнение цилиндра топливно-воздушной смесью, стабильность ее сгорания. При этом двигатель вырабатывает до 20% больше мощности, до 10% больше – крутящего момента. Кроме того, заметно уменьшается расход топлива, а количество токсичных выхлопных газов становится до 20% меньше.
Материалы: http://mashintop.ru/articles.php?id=1198
3 ≫
-
Эффективность работы любого ДВС, КПД двигателя, показатель мощности, моментная характеристика и топливная экономичность напрямую зависят от ряда факторов. Одной из важных составляющих в списке являются фазы газораспределения. Ответить на вопрос, что такое фазы газораспределения двигателя, можно следующим образом. Под такими фазами стоит понимать своевременное открытие и закрытие впускных и выпускных клапанов.
Большинство современных ДВС все более активно получают систему изменения фаз газораспределения, хотя еще около 20 лет назад массово доступный четырехтактный двигатель данной системы не имел. В обычном моторе клапаны открываются благодаря воздействию на них кулачков распределительного вала. Форма профиля кулачка распредвала определяет момент и продолжительность открытия клапана.
Рекомендуем также прочитать статью о системе рециркуляции отработавших газов ЕГР. Из этой статьи вы узнаете о том, что такое EGR, назначении и принципах работы данной системы.
Указанные параметры составляют так называемую ширину фазы газораспределения. Дополнительным параметром также является величина хода клапана (высота его подъема). Стоит учитывать, что топливно-воздушная смесь и отработавшие газы во впуске, в цилиндре ДВС и на выпуске ведут себя не одинаково, что зависит от различных режимов его работы. Скорость течения динамично изменяется, появляются колебания газовых сред, которые приводят к резонансам или застою. Все это влияет на эффективность наполнения цилиндров и их продувки на разных режимах работы силового агрегата.
Фиксированные фазы газораспределения заставляют конструкторов ДВС проектировать мотор так, чтобы присутствовала уверенная тяга в диапазоне низких и средних оборотов, но при этом оставался запас мощности для поддержания набранной скорости и дальнейшего ускорения автомобиля при выходе ДВС на режимы около зоны максимальных оборотов. Дополнительно необходимо обеспечить устойчивую работу силового агрегата на холостом ходу, эластичность на переходных режимах, а также экономичность и экологичность силовой установки. Если фазы газораспределения фиксированы, то улучшение одних параметров закономерно повлечет ухудшение других. Для решения этой задачи была разработана система изменения фаз газораспределения, которая гибко и динамично изменяет основные параметры работы ГРМ зависимо от того режима, в котором работает двигатель в определенный момент.
Система изменения фаз газораспределения влияет на основные параметры работы газораспределительного механизма. К таким параметрам относят моменты открытия и закрытия впускных и выпускных клапанов, длительность времени открытия клапана и высоту его подъема. Указанные параметры представляют собой в итоге фазы газораспределения, так как от них зависит продолжительность такта впуска и выпуска, что выражается тем углом, на который повернут коленчатый вал двигателя по отношению к мертвым точкам (ВМТ и НМТ) во время движения поршня в цилиндре. Форма кулачка распределительного вала определяет фазу газораспределения, так как указанный кулачок оказывает прямое воздействие на впускной или выпускной клапан ГРМ.
Для достижения наибольшей эффективности применительно к динамично изменяющимся режимам работы ДВС необходима различная величина фаз газораспределения. В режиме холостого хода наиболее рациональными становятся «узкие» фазы газораспределения, под которыми понимается позднее открытие и ранее закрытие клапанов. При этом исключается перекрытие фаз, под которым понимается время одновременного открытия впускного и выпускного клапана. Это необходимо для того, чтобы исключить попадание выхлопных газов во впуск и выброс топливно-воздушной смеси в выпускной коллектор.
Выход мотора на режим максимальной мощности означает повышение оборотов, так как распредвал крутится быстрее и время открытия клапанов сокращается. Для того чтобы не терялась мощность и крутящий момент на высоких оборотах сохранялся, в двигатель должно поступать намного больше топливно-воздушной смеси, а выпуск отработавших газов должен быть реализован максимально эффективно. Задача решается путем раннего открытия клапанов и увеличения времени их открытия, делая фазу «широкой». Фаза перекрытия также расширяется до максимума с ростом оборотов, что необходимо для качественной продувки цилиндров.
Сам кулачок распредвала имеет форму, которая способна обеспечить как реализацию узкой, так и широкой фазы. Проблема заключается в том, что фиксированная форма кулачка не позволяет одновременно добиться узких и широких фаз газораспределения. Получается, форма кулачка подобрана с расчетом на возможный оптимальный баланс между высоким показателем крутящего момента на низких оборотах ДВС и максимальной мощностью агрегата в режиме высокой частоты вращения коленчатого вала. Система изменения фаз газораспределения позволяет намного более гибко изменять эти параметры, буквально «подстраивая» ГРМ под конкретный режим работы двигателя для достижения лучшей отдачи от мотора и топливной экономичности.
Системы изменения фаз газораспределения представлены несколькими видами. Главные отличия заключаются в тех и или иных параметрах регулировки ГРМ в процессе его работы. Сегодня используются следующие решения для управления фазами газораспределения:
- система поворота распредвала;
- кулачки распредвала с различным профилем;
- система изменения высоты подъема клапанов;
Широкое распространение получили системы изменения фаз газораспределения, принцип работы которых основан на осуществлении поворота распредвала. К таким схемам управления фазами газораспределения относят: японскую систему VVT-i, Dual VVT-i, решение немецкого концерна BMW под названием VANOS, Double VANOS, схему VVT от Volkswagen, управление фазами газораспределения VTEC от Honda, систему CVVT брендов Hyundai, Kia и концерна GM, регулировку фаз VCP от Renault и т.д.
Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением. Данный тип систем изменения фаз газораспределения конструктивно состоит из специальной муфты, которая управляется гидравлическим способом, а также дополнительной системы управления указанной муфтой. Гидроуправляемая муфта среди автомехаников получила название фазовращатель.
Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.
Получается, гидроуправляемая муфта реализует поворот распредвала ГРМ. Данная муфта конструктивно включает в себя:
- ротор, который соединен с распредвалом;
- корпус, которым выступает шкив привода распредвала;
В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.
Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.
Электронное управление автоматически регулирует работу гидроуправляемой муфты. Система такого управления включает в себя:
- группу входных датчиков;
- электронный блок управления;
- список исполнительных устройств;
Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы и другие датчики, которые используются ЭБУ для управления работой всего двигателя.
К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на специальное управляющее (исполнительное) устройство.
Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.
Эволюция систем изменения фаз газораспределения позволила инженерам не только осуществлять сдвиг фаз, но и эффективно выполнять их расширение и сужение. Следующим типом систем изменения фаз газораспределения являются решения, основанные на использовании кулачков распредвала разной формы. Благодаря такому способу удается достичь ступенчатого изменения момента времени, на который открывается клапан, а также изменить саму высоту подъема клапанов. В списке подобных систем находится VVTL-i от автогиганта Toyotа, VTEC японской Honda и MIVEC от Mitsubishi, решение от Audi под названием Valvelift System и другие.
Указанные системы похожи друг на друга как конструктивно, так и по принципу действия. Немного отличается только немецкая Valvelift System. Наибольшую известность получила системаVVTL-i, VTEC и MIVEC. В основе таких систем изменения фаз газораспределения находятся кулачки с различным профилем, а также система управления. Распределительный вал в таких системах управления фазами газораспределения выполнен так, что имеет сразу два кулачка малого размера, а также один кулачок большего размера. Меньшие кулачки при помощи специального рокера (коромысла) соединяются с впускными клапанами. Большой кулачок отвечает за перемещение одного незадействованного коромысла.
Такая система изменения фаз газораспределения позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.
Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения в таком режиме имеют небольшую продолжительность (узкая фаза).
Существующие разновидности систем VTEC могут иметь сразу три режима регулирования ГРМ. В данной модификации на низких оборотах ДВС работает один малый кулачок распредвала, который осуществляет открытие только одного впускного клапана. Два маленьких кулачка задействуются в режиме средних нагрузок и оборотов двигателя, обеспечивая открытие двух впускных клапанов. Большой кулачок вступает в действие при выходе силовой установки на режим оборотов, приближенных к максимальным.
Система изменения фаз газораспределения I-VTEC, которая представлена производителем Honda, объединила в себе главные преимущества решений как VTC, так и VTEC. Регулирование по трем ступеням обеспечивает существенную экономию топлива. При низкой частоте вращения половина впускных клапанов практически не имеет активности. Увеличение частоты вращения до уровня средних оборотов подключает дезактивированные клапаны, но высота их подъема не подразумевает полного открытия.
Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.
Если рассмотреть пример с системой VVTL-i от Toyota, то после выхода мотора с таким решением на обороты около 6000 об/мин стандартный кулачек распредвала исключается из работы и замещается кулачком с измененным профилем. Указанный кулачек обеспечивает дугой алгоритм работы клапана, сдвигает (расширяет) фазу и увеличивает высоту его подъема. На практике это будет означать, что при выходе мотора на режим высоких оборотов у двигателя появится резкий прирост тяги, необходимый для обеспечения дальнейшего уверенного разгона.
Схема работы системы VVTL-i строится на следующем алгоритме. Время открытия и высота подъема впускных клапанов регулируется аналогично другим решениям. Когда мотор работает в режиме оборотов до 6000 об/мин, тогда воздействие на клапан осуществляет меньший кулачок распредвала, который оказывает нажатие на рокер и таким образом открывает клапана. После набора оборотов выше заданной отметки управлять открытием клапанов начинает высокий кулачок с особым профилем. Для его активации специальный сухарь под давлением масла перемещается.
Дальнейшее развитие систем изменения фаз газораспределения привело к появлению сложных решений, которые основаны на управлении высотой подъема клапанов. Новатором в данной области стала компания BMW, представившая систему под названием Valvetronic на своих моторах в 2001 году.
Регулирование высоты подъема клапана дополнительно позволило исключить из схемы дроссельную заслонку применительно к основным режимам работы ДВС. Наличие заслонки заметно снижает эффективность наполнения цилиндров топливно-воздушной смесью в режиме низких и средних оборотов. Причина кроется в том, что во впускном коллекторе (в области дросселя) в процессе работы ДВС возникает разрежение. Топливно-воздушная смесь в таких условиях разрежения становится инертной, цилиндры наполняются менее эффективно, реакция на нажатие педали газа теряет остроту и становится замедленной.
Лучшим решением данной проблемы становится механическое открытие впускного клапана на такой момент времени, который необходим для эффективного наполнения цилиндра рабочей топливно-воздушной горючей смесью. Продолжительность фазы впуска (впускной фазы) в системах регулирования высоты подъема клапана изменяется зависимо от того, как сильно была нажата педаль газа. Система бездроссельного управления позволяет заметно экономить топливо (до 15% сравнительно с другими решениями), а также повышает мощностную характеристику на 10 % и более.
Система имеет эксцентриковый вал, а также промежуточный рычаг. Указанный эксцентриковый вал начинает вращаться при помощи усилия, которое создает электродвигатель посредством червячной передачи.
Такое вращение эксцентрикового вала оказывает воздействие на промежуточный рычаг, в результате чего изменяется его положение (происходит смещение точки опоры). Смена положения заставляет коромысло двигаться так, чтобы переместить (открыть) клапан точно на необходимую величину.
Система изменения высоты подъема клапана работает постоянно, а высота подъема клапанов напрямую зависит от того или иного режима работы силового агрегата. Клапана могут подниматься в переделах от 0,2 до 12 мм. Система VEL от компании Ниссан обеспечивает высоту подъема клапана в рамках от 0,5 до 2 мм.
Сегодня конструкторы ДВС практически полностью используют потенциал ГРМ. Проектируется максимально возможное количество клапанов на цилиндр, а сами размеры клапана достигли своего предела. Но эволюция двигателя на данном этапе продолжается. Улучшить наполняемость и продувку цилиндров двигателя можно также за счет скорости, с которой возможно реализовать открытие и закрытие клапанов. Речь идет о ГРМ, в котором клапана имеют электромагнитный (электромеханический) привод, который заменяет механический с электронным управлением. Более того, распределительный вал в таком ГРМ полностью отсутствует.
Сама длина хода клапана не является регулируемым параметром. Клапан крепится за счет пружины, а также имеет якорь. Такой якорь электромагнитного клапана размещен между двумя электромагнитами определенной мощности. Задачей таких электромагнитов становится удержание клапана в том или ином крайнем положении.
Точность положения, в котором необходимо осуществить фиксацию клапана, определяется предназначенным для этого отдельным датчиком. Снижение разрушительных нагрузок на электромагнитный ГРМ в момент приближения клапана к его крайней точке (особенно в момент посадки клапана в седло) осуществляется благодаря «торможению» клапана.
Это значит, что привод не перескакивает на зубьях шестерен (при условии нормальной работы натяжителя), то есть фазы газораспределения не сбиваются.
. (для впускных и выпускных клапанов), может оснащаться системой изменения фаз газораспределения и т.д.
Другими словами, ГРМ осуществляет управление фазами газораспределения. ГРМ устанавливается в головке бока цилиндров.
Степень сжатия имеет зависимость от фаз газораспределения. Если точнее, то степень сжатия зависит от той задержки.
Дело в том, что в момент разрыва ремня на многих двигателях сбиваются фазы газораспределения, распредвал не крутится, ГРМ перестает работать.
От формы кулачков распределительного вала зависят фазы газораспределения. Под такими фазами понимаются моменты открытия и закрытия клапанов.
Материалы: http://krutimotor.ru/izmenenie-faz-gazoraspredeleniya/