Поршень двигателя внутреннего сгорания

Подвижные детали КШМ

Поршневая группа

Поршневая группа образует подвижную стенку рабочего объема цилиндра. Именно перемещение этой «стенки», т. е. поршня, является показателем работы, выполненной сгоревшими и расширяющимися газами.

Поршневая группа кривошипно-шатунного механизма включает в себя поршень, поршневые кольца (компрессионные и маслосъемные), поршневой палец и фиксирующие его детали. Иногда поршневую группу рассматривают вместе с цилиндром, и называют цилиндропоршневой группой.

Поршень

Требования, предъявляемые к конструкции поршня

Поршень воспринимает силу давления газов и передает ее через поршневой палец шатуну. При этом он совершает прямолинейное возвратно-поступательное движение.

Условия, в которых работает поршень:

  • высокое давление газов (3,5…5,5 МПа для бензиновых, и 6,0…15,0 МПа для дизельных двигателей);
  • контакт с горячими газами (до 2600 ˚С);
  • движение с переменой направления и скорости.

Возвратно-поступательное движение поршня вызывает значительные инерционные нагрузки в зонах прохода мертвых точек, где поршень изменяет направление движения на противоположное. Инерционные силы зависят от скорости перемещения поршня и его массы.

Поршень воспринимает значительные усилия: более 40 кН в бензиновых двигателях, и 20 кН – в дизелях. Контакт с горячими газами вызывает нагрев центральной части поршня до температуры 300…350 ˚С. Сильный нагрев поршня опасен возможностью заклинивания в цилиндре из-за температурного расширения, и даже прогоранием днища поршня.

Перемещение поршня сопровождается повышенным трением и, как следствие, изнашиванием его поверхности и поверхности цилиндра (гильзы). Во время движения поршня от верхней мертвой точки к нижней и обратно сила давления поверхности поршня на поверхность цилиндра (гильзы) изменяется и по величине, и по направлению в зависимости от такта, протекающего в цилиндре.

Максимальное давление поршень оказывает на стенку цилиндра при такте рабочего хода, в момент, когда шатун начинает отклоняться от оси поршня. При этом сила давления газов, передаваемая поршнем шатуну, вызывает реактивную силу в поршневом пальце, который в данном случае является цилиндрическим шарниром. Эта реакция направлена от поршневого пальца вдоль линии шатуна, и может быть разложена на две составляющие – одна направлена вдоль оси поршня, вторая (боковая сила) перпендикулярна ей и направлена по нормали к поверхности цилиндра.

Именно эта (боковая) сила и вызывает значительное трение между поверхностями поршня и цилиндра (гильзы), приводящее к их износу, дополнительному нагреву деталей и снижению КПД из-за потерь энергии.

Попытки уменьшить силы трения между поршнем и стенками цилиндра осложняются тем, что между цилиндром и поршнем необходим минимальный зазор, обеспечивающий полную герметизацию рабочей полости с целью не допустить прорыв газов, а также попадание масла в рабочее пространство цилиндра. Величина зазора между поршнем и поверхностью цилиндра лимитируется тепловым расширением деталей. Если его сделать слишком малым, в соответствии с требованиями герметичности, то возможно заклинивание поршня в цилиндре из-за теплового расширения.

При изменении направления движения поршня и процессов (тактов), протекающих в цилиндре, сила трения поршня о стенки цилиндра меняет характер – поршень прижимается к противоположной стенке цилиндра, при этом в зоне перехода мертвых точек поршень совершает удары по цилиндру из-за резкого изменения величины и направления нагрузки.

Конструкторам, при разработке двигателей, приходится решать комплекс проблем, связанных с описанными выше условиями работы деталей цилиндропоршневой группы:

  • высокими тепловыми нагрузками, вызывающими температурное расширение и коррозию металлов деталей КШМ;
  • колоссальным давлением и инерционными нагрузками, способным разрушить детали и их соединения;
  • значительными силами трения, вызывающими дополнительный нагрев, износ и потери энергии.

Исходя из этого, к конструкции поршня предъявляются следующие требования:

  • достаточная жесткость, позволяющая выдерживать силовые нагрузки;
  • тепловая стойкость и минимальные температурные деформации;
  • минимальная масса для снижения инерционных нагрузок, при этом масса поршней в многоцилиндровых двигателях должна быть одинаковой;
  • обеспечение высокой степени герметизации рабочей полости цилиндра;
  • минимальное трение о стенки цилиндров;
  • высокая долговечность, поскольку замена поршней связана с трудоемкими ремонтными операциями.

Особенности конструкции поршня

Поршни современных автомобильных двигателей имеют сложную пространственную форму, которая обусловлена различными факторами и условиями, в которых работает эта ответственная деталь. Многие элементы и особенности формы поршня не заметны невооруженным глазом, поскольку отклонения от цилиндричности и симметрии минимальны, тем не менее, они присутствуют.

Рассмотрим подробнее – как устроен поршень двигателя внутреннего сгорания, и на какие хитрости приходится идти конструкторам, чтобы обеспечить выполнение требований, изложенных выше.

Поршень двигателя внутреннего сгорания состоит из верхней части – головки и нижней – юбки.

Верхняя часть головки поршня – днище непосредственно воспринимает усилия со стороны рабочих газов. В бензиновых двигателях днище поршня обычно делают плоским. В поршневых днищах дизелей часто выполняют камеру сгорания.

Днище поршня представляет собой массивный диск, который соединяется с помощью ребер или стоек с приливами, имеющими отверстия для поршневого пальца – бобышками. Внутренняя поверхность поршня выполняется в виде арки, что обеспечивает необходимую жесткость и теплоотвод.

На боковой поверхности поршня прорезаны канавки для поршневых колец. Число поршневых колец зависит от давления газов и средней скорости перемещения поршня (т. е. частоты вращения коленчатого вала двигателя) – чем меньше средняя скорость поршня, тем больше требуется колец.

В современных двигателях, наряду с ростом частоты вращения коленчатого вала, наблюдается тенденция к сокращению числа компрессионных колец на поршнях. Это обусловлено необходимостью уменьшения массы поршня с целью снижения инерционных нагрузок, а также уменьшения сил трения, отнимающих существенную долю мощности двигателя. При этом возможность прорыва газов в картер высокооборотистого двигателя считается менее актуальной проблемой. Поэтому в двигателях современных легковых и гоночных автомобилей можно встретить конструкции с одним компрессионным кольцом на поршне, а сами поршни имеют укороченную юбку.

Кроме компрессионных колец на поршне устанавливают одно или два маслосъемных кольца. Канавки, выполненные в поршне под маслосъемные кольца, имеют дренажные отверстия для отвода моторного масла во внутреннюю полость поршня при снятии его кольцом с поверхности цилиндра (гильзы). Это масло обычно используется для охлаждения внутренней поверхности днища и юбки поршня, а затем стекает в поддон картера.

Форма днища поршня зависит от типа двигателя, способа смесеобразования и формы камеры сгорания. Наиболее распространена плоская форма днища, хотя встречаются выпуклая и вогнутая. В некоторых случаях в днище поршня выполняют углубления для тарелок клапанов при расположении поршня в верхней мертвой точке (ВМТ). Как упоминалось выше, в днищах поршней дизельных двигателей нередко выполняют камеры сгорания, форма которых может различной.

Нижняя часть поршня – юбка направляет поршень в прямолинейном движении, при этом она передает стенке цилиндра боковое усилие, величина которого зависит от положения поршня и процессов, протекающих в рабочей полости цилиндра. Величина бокового усилия, передаваемого юбкой поршня, значительно меньше максимального усилия, воспринимаемого днищем со стороны газов, поэтому юбка выполняется относительно тонкостенной.

В нижней части юбки у дизелей часто устанавливают второе маслосъемное кольцо, что позволяет улучшить смазывание цилиндра и уменьшить вероятность попадания масла в рабочую полость цилиндра. Для уменьшения массы поршня и сил трения ненагруженные части юбки срезают по диаметру и укорачивают по высоте. Внутри юбки обычно выполняются технологические приливы, которые используются для подгонки поршней по массе.

Конструкция и размеры поршней зависят главным образом от быстроходности двигателя, а также от величины и скорости нарастания давления газов. Так, поршни быстроходных бензиновых двигателей максимально облегчены, а поршни дизелей имеют более массивную и жесткую конструкцию.

В момент перехода поршня через ВМТ изменяется направление действия боковой силы, которая является одной из составляющих силы давления газов на поршень. В результате поршень перемещается от одной стенки цилиндра к другой – происходит перекладка поршня. Это вызывает удар поршня о стенку цилиндра, сопровождающийся характерным стуком. Чтобы уменьшить это вредное явление поршневые пальцы смещают на 2…3 мм в сторону действия максимальной боковой силы; при этом боковая сила давления поршня на цилиндр значительно уменьшается. Такое смещение поршневого пальца называется дезаксажем .

Применение в конструкции поршня дезаксажа требует соблюдения правил монтажа КШМ - поршень должен устанавливаться строго по меткам, указывающим, где передняя часть (обычно это стрелка на днище).

Оригинальное решение, призванное снизить воздействие боковой силы, применили конструкторы двигателей фирмы "Фольксваген". Днище поршня в таких двигателях выполнено не под прямым углом к оси цилиндра, а немного скошено. По мнению конструкторов, это позволяет оптимальнее распределить нагрузку на поршень, и улучшить процесс смесеобразования в цилиндре при тактах впуска и сжатия.

Для того, чтобы удовлетворить противоречивые требования герметичности рабочей полости, предполагающие наличие минимальных зазоров между юбкой поршня и цилиндром, и предотвращения заклинивания детали в результате теплового расширения, в форме поршня применяют следующие конструктивные элементы:

  • уменьшение жесткости юбки за счет специальных прорезей, компенсирующих ее тепловое расширение и улучшающих охлаждение нижней части поршня. Прорези выполняют на той стороне юбки, которая наименее нагружена боковыми силами, прижимающими поршень к цилиндру;

Последнее условие выполнить непросто, поскольку поршень нагревается по всему объему неравномерно и имеет сложную пространственную форму – в верхней части его форма симметрична, а в районе бобышек и на нижней части юбки имеются ассиметричные элементы. Все это приводит к неодинаковой температурной деформации отдельных участков поршня при его нагреве во время работы.

По этим причинам в конструкции поршня современных автомобильных двигателей обычно выполняют следующие элементы, усложняющие его форму:

  • днище поршня имеет меньший диаметр по сравнению с юбкой и наиболее приближено в поперечном сечении к правильной окружности.

Меньший диаметр сечения днища поршня связан с его высокой рабочей температурой и, как следствие, с большим тепловым расширением, чем в районе юбки. Поэтому поршень современного двигателя в продольном сечении имеет слегка коническую или бочкообразную форму, зауженную к днищу.

Уменьшение диаметра в верхнем поясе конической юбки для поршней из алюминиевого сплава составляет 0,0003…0,0005D, где D – диаметр цилиндра. При нагреве до рабочих температур форма поршня по длине «выравнивается» до правильного цилиндра.

Большая ось овала располагается в плоскости, перпендикулярной оси поршневого пальца. Величина овальности колеблется от 0,182 до 0,8 мм.

Очевидно, что на все эти ухищрения конструкторам приходится идти, чтобы придать поршню в нагретом до рабочих температур состоянии правильную цилиндрическую форму, обеспечив тем самым минимальный зазор между ним и цилиндром.

Наиболее эффективным способом предотвращения заклинивания поршня в цилиндре вследствие его теплового расширения при минимальном зазоре является принудительное охлаждение юбки и вставка в юбку поршня элементов из металла, имеющего низкий коэффициент температурного расширения. Чаще всего применяются вставки из малоуглеродистой стали в виде поперечных пластин, которые при отливке поршня помещаются в зону бобышек. В некоторых случаях вместо пластин применяются кольца или полукольца, заливаемые в верхнем поясе юбки поршня.

Температура днища алюминиевых поршней не должна превышать 320…350 ˚С. Поэтому для увеличения теплоотвода переход от днища поршня к стенкам делают плавным (в виде арки) и достаточно массивным. Для более эффективного теплоотвода от днища поршня применяют его принудительное охлаждение, брызгая на внутреннюю поверхность днища моторное масло из специальной форсунки. Обычно функцию такой форсунки выполняет специальное калиброванное отверстие, выполненное в верхней головке шатуна. Иногда форсунка устанавливается на корпусе двигателя в нижней части цилиндра.

Для обеспечения нормального теплового режима верхнего компрессионного кольца его располагают значительно ниже кромки днища, образуя так называемый жаровой или огневой пояс. Наиболее изнашиваемые торцы канавки под поршневые кольца часто усиливают специальными вставками из износостойкого материала.

В качестве материала для изготовления поршней широко применяют алюминиевые сплавы, основным достоинством которых является небольшая масса и хорошая теплопроводность. К недостаткам алюминиевых сплавов можно отнести невысокую усталостную прочность, большой коэффициент температурного расширения, недостаточную износостойкость и сравнительно высокую стоимость.

В состав сплавов кроме алюминия входят кремний (11…25%) и добавки натрия, азота, фосфора, никеля, хрома, магния и меди. Отлитые или отштампованные заготовки подвергают механической и термической обработке.

Значительно реже в качестве материала для поршней используют чугун, поскольку этот металл значительно дешевле и прочнее алюминия. Но, несмотря на высокую прочность и износостойкость, чугун обладает сравнительно большой массой, что приводит к появлению значительных инерционных нагрузок, особенно при изменении направления движения поршня. Поэтому для изготовления поршней быстроходных двигателей чугун не применяется.

Главная страница
Устройство автомобилей
  • Экзаменационные билеты

для группы Т-21 (IV семестр)

для группы Т-31 (V семестр)

для группы Т-31 (VI семестр)

КГБПОУ «Каменский агротехнический техникум»

Материалы: http://k-a-t.ru/PM.01_mdk.01.01/3_dvs_7_6/

2 ≫

Поршень является одним из самых значимых элементов при преобразовании химической энергии топлива в тепловую, а затем - в механическую, как в прямом, так и в переносном смысле. Моторные характеристики во многом зависят от того, насколько хорошо поршень выполняет свои задачи. Это определяет эффективность и, что ещё важнее, надёжность мотора. Особое значение данный параметр принимает, когда идёт речь о модификациях автомобилей в салонах тюнинга, или о спортивном применении. Конструкторы всегда сталкиваются с проблемой использования специальных поршней, когда повышается мощность. Поршень можно считать одной из самых сложных моторных деталей из-за множества выполняемых функций и достаточно противоречивых свойств. Это в высшей степени подтверждает тот факт, что очень мало автостроителей изготавливают поршни для своих моторов, используя лишь свои силы.

В большинстве случаев они прибегают к услугам специализирующихся на этом деле фирм. О поршнях ходит огромное количество тайн и догадок, которые создаёт разнообразие размеров и форм этой детали. В соответствующем разделе нашего сайта вы сможете найти статью как повысить эффективность современных двигательных систем. Изготовить поршень в стандартных условиях машиностроения в тюнинговых компаниях технически сложно, практически невозможно, поэтому большинство компаний этим делом отказывается заниматься. К тому же, производство таких сложных деталей поштучно может быть обременительно с точки зрения финансов. Интуитивно тюнеры понимают, что улучшенные двигатели должны иметь улучшенные поршни.

Давайте рассмотрим подробнее, какие к поршням обычно предъявляются требования, и как вообще они устроены.

  • Поршень, во-первых, перемещается в цилиндре, что позволяет совершать механическую работу путём расширения продуктов горения топлива, то есть, сжатых газов

Из этого можно сделать вывод, что он должен сопротивляться давлению газов, обладать термостойкостью и уплотнять канал цилиндра.

  • Во-вторых, поршень должен соответствовать требованиям пары трения, чтобы механические потери и износ стали минимальными.
  • В-третьих, он должен выдерживать реакцию шатуна и механическое воздействие со стороны камеры сгорания.
  • В-четвёртых, поршень должен минимально нагружать инерционными силами криво-шатунный механизм, совершая с высокой скоростью возвратно-подступательные движения.

Получается, что все проблемы, связанные с этой значимой частью двигателя, разделить можно на две категории:

  1. Это механические процессы
  2. Тепловые процессы, причём первая намного обширнее второй. Категории имеют достаточно тесную взаимосвязь. Давайте более подробно рассмотрим первую.

Как известно, топливо сгорает в непоршневом пространстве, и при этом выделяет очень большое количество тепла при каждом цикле работы двигателя. Температура уже сгоревших газов в среднем равна 2000 градусов. Часть энергии перейдёт движущимся частям мотора, а остальная станет нагревать двигатель. Энергия, которая останется в итоге, улетит в трубу вместе с обработанными газами. По законам физики два тела могут передавать друг другу тепло до того момента, пока их температуры полностью не сравняются. Соответственно, если поршень периодически не охлаждать, спустя некоторое время он просто-напросто расплавится. Это очень значимый момент для понимания принципов работы всей поршневой группы.

Особенно это важно тогда, когда мотор форсируется. При увеличении мощности мотора автоматически увеличивается количество генерируемого в камере сгорания тепла за одну временную единицу. Конечно, мы видим очень даже нечасто поршни в расплавленном, однако в любой их проблеме обязательно есть упоминается температура, точно также как скорость присутствует в любом ДТП. Конечно, вина здесь лежит на водителе, однако никто бы не пострадал, если бы автомобиль стоял на месте. Дело в том, что высокие температуры ухудшают характеристики всех материалов. Нагрузка в 100 градусов вызовет упругую деформацию, в 300 градусов - деформирует изделие полностью, а в 450 градусов деформирует её. По этой причине нужно либо применять материалы, которые могут выдержать серьёзные нагрузки от высоких температур, либо принимать меры, предотвращающие рост температуры поршня. Обычно делается и то, и другое. Тем не менее, конструкция поршня должна быть такой, чтобы в необходимых местах было определённое количество металла, который способен противостоять разрушению.

Курс общей физики подтверждает тот факт, что тепловой поток направлен к менее нагретым телам от более нагретых. Таким образом, у нас есть возможность увидеть, как температуры распределяются по поршню во время его работы, и определить значимые конструктивные моменты, которые влияют на его температуру, другими словами, понять, каким образом происходит охлаждение. Мы знаем, что больше всех деталей нагревается рабочее тело, то есть, газы в камере сгорания. Совершенно ясно, что в конце концов тепло окажется передано воздуху, который окружает автомобиль – самому холодному, но при определённых обстоятельствах бесконечно теплоёмкому. Омывая корпус двигателя и радиатор, воздух студит блок цилиндров, охлаждающую жидкость и корпус головки. Нам остаётся только найти мостик, по которому поршень отдаёт своё тепло в антифриз и блок. Для этого существую четыре пути. По своему вкладу они абсолютно разные, однако нужно упомянуть о каждом из них, так как они имеют меньшее или большее значение в зависимости от конструкции двигателя.

Первый путь

Это поршневые кольца, он обеспечивает наибольший поток. Так как первое кольцо расположено ближе к днищу, именно оно играет главную роль. Эта самый короткий путь к охлаждающей жидкости через стенку цилиндра. Одновременно кольца прижаты к стенкам цилиндра и к поршневым канавкам. Они обеспечивают более половины всего теплового потока.

Второй путь

Не так очевиден, однако недооценить его трудно. Второй жидкостью для охлаждения двигателя является масло. Несмотря на свою слабую циркуляцию и относительно небольшой объём, масляный туман имеет доступ к самым нагретым частям мотора. Он от самых горячих точек уносит с собой значительную часть тепла, и отдаёт его в поддон картера. В данном разделе нашего сайта вы сможете найти статью про установку автоматического замка багажника. При применении масляных форсунок, которые направляют струю на внутреннюю поверхность днища поршня, в теплообмене доля масла нередко достигает 30 – 40 процентов. Разумеется, что если мы нагружаем масло больше степени функции теплоносителя, его необходимо будет остудить. Перегретое масло не только потеряет свои свойства, но так же ещё может привести к неисправности подшипников. И чем выше будет температура масло, тем меньше оно сможет перенести через себя тепла.

Третий путь

Через большие бобышки в палец, потом в шатун, и уже затем в масло. Этот способ не так интересен, ведь на пути имеются значительные тепловые сопротивления в виде стальных деталей и зазоров, которые обладают невысоким коэффициентом сопротивления и значительной протяжённостью.

Четвёртый путь

Не связан с охлаждающей жидкостью или маслом. Часть тепла забирает поступившая в цилиндр после такта впуска свежая топливовоздушная смесь. Количество тепла, которое заберёт эта смесь, зависит от степени открытия дросселя и режима работы. Следует отметить, что тепло, которое образуется при сгорании, также пропорционально заряду. Можно сказать, что данный путь охлаждения отличается скоротечностью, обладает импульсным характером, высокоэффективен, пропорционален последующему нагреванию, благодаря тому факту, что тепло отбирается с той же стороны, с которой нагревается поршень.

Также следует рассказать про стандартный приём, который применяется при настройке моторов спортивного типа. Дело в том, что теплоёмкость смеси в значительной степени определяется её составом. Нередко для нормализации работы мотора нужно совсем немного, на 5 – 10 градусов, снизить внутреннюю температуру. Достигается это при помощи лёгкого забогащения смеси. Причём, данный факт никаким образом не влияет на процесс горения, а температура понижается. Порог детонации отодвигается, калильное зажигание исчезает. В данном случае будет лучше немного богаче, чем немного беднее. Моторы, которые работают на метаноле намного меньше предъявляют требований к системе охлаждения из-за теплоты преобразования, которая в 3 раза больше, чем у бензина.

Следует уделить пристальное внимание процессу передачи тепла по поршневым кольцам по причине его большей значимости. Совершенно ясно, что если перекрыть этот путь по каким либо причинам, длительных форсированных режимов двигатель уже не выдержит. Температура станет очень высокой, поршень начнёт плавиться, а двигатель разрушится. Теперь давайте вспомним о такой характеристики, как процессия, которая, казалось бы, никак не влияет на теплообмен. Если человек сталкивался с подержанным автомобилем, он должен чётко представлять себе, что это такое. Это очень значимый параметр, о котором желает знать любой автовладелец, который заботится о состоянии двигателя своего автомобиля. Компрессия косвенно указывает на степень плотности поршневой группы. Это очень важный параметр, если рассматривать его с точки зрения теплопередачи.

Давайте представим ситуацию, что кольцо к стенке цилиндра не прилегает по всей своей длине. В этом случае сгоревшие газы создадут барьер, который будет мешать передаче тепла через кольцо в стенку цилиндра, начиная от поршня, когда будут прорываться в щель. Это равносильно тому, что вы закроете часть радиатора автомобиля, чтобы у него не было возможности охладиться воздухом.

Если у кольца нет тесного контакта с канавкой, мы будем наблюдать ещё более страшную картину. В тех местах, где у газов есть возможность протекать через канавку мимо кольца, участок поршня просто лишается возможности охлаждаться, попадая в своеобразный тепловой мешок. В результате получаем выкрашивание и прогар части огневого пояса, которая прилегает к месту утечки. Именно по этой причине так много внимания уделяется износу канавки и геометрии цилиндра кольца. И главная причина вовсе не ухудшение энергетики. Ведь небольшое количество газов, которые прорываются в картер, не несёт в себе достаточной энергии, чтобы оказать влияние на потерю давления в такте рабочего хода и, соответственно, на потерю двигателем момента. Тем более, если речь идёт о высокооборотном моторе. Намного больше вреда двигателю наносит небольшая плотность в смысле потери надёжности и жёсткости и локальных тепловых перегрузок. Именно по этой причине очень быстро ломаются восстановленные методом перегильзовки блока или замены колец поршни, которые уже вышли из строя. Именно поэтому в первую очередь у спортивных моторов разрушается цилиндр, который имеет меньшую компрессию.

Здесь, видимо, следует коснуться вопроса, обязательно обсуждаемого при изготовлении специальных поршней для тюнинговых или спортивных приложений. Сколько именно у нового поршня будет колец? Какой толщины будут эти кольца? С точки зрения механики лучше, когда колец немного. Чем уже они будут, тем меньше будет потерь в поршневой группе. Однако при уменьшении толщины и высоты колец, будут ухудшаться условия охлаждения поршня, и увеличиваться тепловое сопротивление. Поэтому при выборе конструкции всегда приходится идти на компромисс. Жёсткость рамок увеличивается с быстроходностью мотора. В данном разделе нашего сайта вы сможете найти статью про перенос аккумулятора в багажник автомобиля. Скоротечность процессов снижает требования к уплотнению. Механические потери растут вместе со скоростью, и их нужно уменьшать, иначе всё, что преобразовалось ранее в механическую мощность, просто не достигнет колёс. Между тем, количество вырабатываемого тепла становится больше, поэтому охлаждающий мостик должен быть расширен. Из этого получаем, что кольца должны быть как узкими, так и широкими. Для быстроходности их нужно два, а для эффективности охлаждения поршня - три. Найти оптимальное решение этой задачи должен конструктор. Результаты его работы покажет сбалансированность двигателя.

На сегодняшний день инженеры, которые работают в крупных научных центрах и производственных компаниях, имеют огромный эмпирический материал, на основе которого создают расчётные методы, позволяющие предсказать поле характеристик и температур конкретного изделия с очень большой точностью. Это доступно очень и очень немногим тюнинговым компаниям. В этой статье специально не упоминаются многие значения конкретных величин, которые бы побудили бы некоторых читателей взять в руки калькуляторы. Делать же тепловые расчёты на пальцах совсем не перспективное и абсолютно никому не нужное занятие. Эта статья раскрывает ту сторону происходящих в двигателе процессов, которая очень редко рассматривается, но всегда подразумевается. Я лишь хотел раскрыть необходимость и важность влияния тепла на общую эффективность работы двигателя. Что касается механической части этого вопроса, то о нём мы подробно поговорим в следующий раз.

Материалы: http://mashintop.ru/articles.php?id=1174

3 ≫

Поршень двигателя является одной из самых главных деталей и конечно же от материала и качества поршней зависит успешная эксплуатация мотора и его долгий ресурс. В этой статье, больше рассчитанной на новичков, будет описано всё (ну или почти всё), что связано с поршнем, а именно: назначение поршня, его устройство, материалы и технология изготовления поршней и другие нюансы.

Сразу хочу предупредить уважаемых читателей, что если какой то важный нюанс, связанный с поршнями, или с технологией их изготовления, я уже написал более подробно в другой статье, то разумеется мне нет смысла повторяться в этой статье. Я просто напросто буду ставить соответствующую ссылку, перейдя по которой уважаемый читатель при желании сможет перейти на другую более подробную статью и в ней ознакомиться с нужной информацией о поршнях более подробно.

На первый взгляд многим новичкам может показаться, что поршень довольно простая деталь и придумать уже что то более совершенное в его технологии производства, форме и конструкции невозможно. Но на самом деле всё не так просто и не смотря на внешнюю простоту формы, поршни и технологии их изготовления до сих пор совершенствуются, особенно на самых современных (серийных или спортивных) более высоко-оборотистых форсированных двигателях. Но не будем забегать вперёд и начнём от простого к сложному.

Для начала разберём для чего нужен поршень (поршни) в двигателе, как он устроен, какие формы поршней бывают для разных двигателей и далее уже плавно перейдём к технологиям изготовления.

Для чего нужен поршень двигателя.

Поршень, за счёт кривошипно-шатунного механизма (коленвала и шатуна — см. рисунок чуть ниже), перемещаясь возвратно-поступательно в цилиндре двигателя, например перемещаясь вверх — для засасывания в цилиндр и сжатия в камере сгорания рабочей смеси, а так же за счёт расширения сгораемых газов перемещаясь в цилиндре вниз, совершает работу, преобразуя тепловую энергию сгораемого топлива в энергию движения, которая способствует (через трансмиссию) вращению ведущих колёс транспортного средства.

Поршень двигателя и силы действующие на него: А — сила, прижимающая поршень к стенкам цилиндра; Б — сила, перемещающая поршень вниз; В — сила передаваемая усилие от поршня к шатуну и наоборот, Г — сила давления сгораемых газов, перемещающая поршень вниз.

То есть по сути без поршня в одноцилиндровом двигателе, или без поршней в многоцилиндровом двигателе — невозможно движение транспортного средства, на которое установлен двигатель.

Кроме того, как видно из рисунка, на поршень действуют несколько сил, (также на том же рисунке не показаны противоположные силы, давящие на поршень снизу вверх).

И исходя из того, что на поршень давят и довольно сильно несколько сил, у поршня должны быть некоторые важные свойства, а именно:

  • способность поршня двигателя противостоять огромному давлению газов, расширяющихся в камере сгорания.
  • способность сжать и противостоять большому давлению сжимаемого топлива (особенно на дизелях).
  • способность противостоять прорыву газов между стенками цилиндра и своими стенками.
  • способность передавать огромное давление на шатун, через поршневой палец, без поломок.
  • способность не изнашиваться долгое время от трения о стенки цилиндра.
  • способность не заклиниваться в цилиндре от теплового расширения материала, из которого он изготовлен.
  • поршень двигателя должен иметь способность противостоять высокой температуре сгорания топлива.
  • иметь большую прочность при небольшой массе, чтобы исключить вибрацию и инерционность.

И это далеко не все требования, предъявляемые к поршням, особенно на современных высоко-оборотистых моторах. О полезных свойствах и требованиях современных поршней мы ещё поговорим, а для начала давайте рассмотрим устройство современного поршня.

Как видно на рисунке, современный поршень можно разделить на несколько частей, каждая из которых имеет важное значение и свои функции. Но ниже будут описаны основные наиболее важные части поршня двигателя и начнём с наиболее важной и ответственной части — с днища поршня.

Донышко (днище) поршня двигателя.

Это самая верхняя и наиболее нагруженная поверхность поршня, которая обращена непосредственно к камере сгорания двигателя. И нагружено донышко любого поршня не только большой давящей силой от расширяющихся с огромной скоростью газов, но и высокой температурой сгорания рабочей смеси.

Кроме того, донышко поршня своим профилем определяет нижнюю поверхность самой камеры сгорания и также определяет такой важный параметр, как степень сжатия. Кстати, зависеть форма донышка поршня может от некоторых параметров, например от расположения в камере сгорания свечей, или форсунок, от расположения и величины открытия клапанов, от диаметра тарелок клапанов — на фото слева хорошо видны выемки для тарелок клапанов в донышке поршня, которые исключают встречу клапанов с донышком.

Так же форма и размеры донышка поршня зависят от объёма и формы камеры сгорания двигателя, или от особенностей подачи в нее топливно-воздушной смеси — например на некоторых старых двухтактных двигателях на донышке поршня делали характерный выступ-гребень, играющий роль отражателя и направляющий поток продуктов горения при продувке. Этот выступ показан на рисунке 2 (выступ на донышке также виден на рисунке выше, где показано устройство поршня). Кстати, на рисунке 2 так же показан рабочий процесс древнего двухтактного двигателя и то, как влияет выступ на донышке поршня на наполнение рабочей смесью и на выпуск отработанных газов (то есть на улучшение продувки).

Двухтактный двигатель мотоцикла — рабочий процесс

Но на некоторых двигателях (например на некоторых дизелях) на донышке поршня в центре наоборот имеется круглая выемка, благодаря которой увеличивается объем камеры сгорания и соответственно уменьшается степень сжатия.

Но, поскольку выемка небольшого диаметра в центре донышка является не желательной для благоприятного наполнения рабочей смесью (появляются нежелательные завихрения), то на многих двигателях на донышках поршней в центре перестали делать выемки.

А для уменьшения объема камеры сгорания приходится делать так называемые вытеснители, то есть изготавливать донышко с определенным объёмом материала, который располагают немного выше основной плоскости донышка поршня.

Ну и ещё один важный показатель — это толщина донышка поршня. Чем она толще, тем прочнее поршень и тем большую тепловую и силовую нагрузку он сможет выдержать довольно долго. А чем тоньше толщина донышка поршня, тем бóльшая вероятность прогара, или физического разрушения донышка.

Но с увеличением толщины донышка поршня, соответственно увеличивается и масса поршня, что для форсированных высоко-оборотистых моторов очень нежелательно. И поэтому конструкторы идут на компромисс, то есть «ловят» золотую середину между прочностью и массой, ну и конечно же постоянно стараются усовершенствовать технологии производства поршней для современных моторов (о технологиях позже).

Как видно на рисунке выше, где показано устройство поршня двигателя, жаровым поясом считается расстояние от донышка поршня до его самого верхнего компрессионного кольца. Следует учесть, что чем меньше расстояние от донышка поршня до верхнего кольца, то есть чем тоньше жаровой пояс, тем более высокую тепловую напряжённость будут испытывать нижние элементы поршня, и тем быстрее они будут изнашиваться.

Поэтому для высоко напряжённых форсированных двигателей желательно делать жаровой пояс потолще, однако это делают не всегда, так как это тоже может увеличить высоту и массу поршня, что для форсированных и высоко-оборотистых двигателей нежелательно. Тут так же как и с толщиной донышка поршня, важно найти золотую середину.

Уплотняющий участок поршня.

Этот участок начинается от нижней части жарового пояса до того места, где заканчивается канавка самого нижнего поршневого кольца. На уплотняющем участке поршня расположены канавки поршневых колец и вставлены сами кольца (компрессионные и масло-съёмные).

Канавки колец не только удерживают поршневые кольца на месте, но ещё и обеспечивают их подвижность (благодаря определённым зазорам между кольцами и канавками), что позволяет поршневым кольцам свободно сжиматься и разжиматься за счёт своей упругости (что очень важно если цилиндр изношен и имеет форму бочки). Это также способствует прижиму поршневых колец к стенкам цилиндра, что исключает прорыв газов и способствует хорошей компрессии, даже если цилиндр немного изношен.

Как видно на рисунке с устройством поршня, в канавке (канавках), предназначенной для маслосъёмного кольца имеются отверстия для обратного стока моторного масла, которое масло-съёмное кольцо (или кольца) снимает со стенок цилиндра, при движении поршня в цилиндре.

Кроме основной функции (не допустить прорыва газов) уплотняющего участка, у него есть ещё одно важное свойство — это отвод (точнее распределение) части тепла от поршня на цилиндр и весь двигатель. Разумеется для эффективного распределения (отвода) тепла и для предотвращения прорыва газов важно, что бы поршневые кольца довольно плотно прилегали к своим канавкам, но особенно к поверхности стенки цилиндра.

Головка поршня представляет из себя общий участок, который включает в себя уже описанные мной выше донышко поршня и его и уплотняющий участок. Чем больше и мощнее головка поршня, тем выше его прочность, лучше отвод тепла и соответственно больше ресурс, но и масса тоже больше, что как было сказано выше, нежелательно для высоко-оборотистых моторов. А снизить массу, без уменьшения ресурса, можно если увеличить прочность поршня путём усовершенствования технологии изготовления, но об этом я подробнее напишу позже.

Кстати, чуть не забыл сказать, что в некоторых конструкциях современных поршней, изготавливаемых из алюминиевых сплавов, в головке поршня делают нирезистовую вставку, то есть в головку поршня заливают ободок из нирезиста (специального прочного и стойкого к коррозии чугуна).

В этом ободке прорезают канавку для самого верхнего и наиболее нагруженного компрессионного поршневого кольца. И хотя благодаря вставке немного увеличивается масса поршня, зато существенно увеличивается его прочность и износостойкость (к примеру нирезистовую вставку имеют наши отечественные Тутаевские поршни, изготовленные на ТМЗ).

Компрессионная высота поршня.

Компрессионная высота — это расстояние в миллиметрах, которое отсчитывается от донышка поршня до оси поршневого пальца (или наоборот). У разных поршней компрессионная высота разная и разумеется чем больше расстояние от оси пальца до донышка, тем она больше, а чем она больше, тем лучше компрессия и меньшая вероятность прорыва газов, но и больше сила трения и нагрев поршня.

На старых тихоходных и мало-оборотистых моторах компрессионная высота поршня была больше, а на современных более высоко-оборотистых двигателях стала меньше. Здесь тоже важно найти золотую середину, которая зависит от форсировки мотора (чем выше обороты, тем меньше должно быть трение и меньшая компрессионная высота).

Юбкой называют нижнюю часть поршня (её ещё называют направляющей частью). Юбка включает в себя бобышки поршня с отверстиями, в которые вставляется поршневой палец. Внешняя поверхность юбки поршня является направляющей (опорной) поверхностью поршня и эта поверхность также как и поршневые кольца трётся о стенки цилиндра.

Примерно в средней части юбки поршня имеются приливы, в которых имеются отверстия для поршневого пальца. А так как вес материала поршня у приливов тяжелее, чем в других местах юбки, то деформации от воздействия температуры в плоскости бобышек будут больше, чем в других частях поршня.

Поэтому для снижения температурных воздействий (и напряжений) на поршне с двух сторон с поверхности юбки снимают часть материала, примерно на глубину 0,5-1,5 мм и получаются небольшие углубления. Эти углубления, называемые холодильниками, не только способствуют устранению температурных воздействий и деформаций, но ещё и препятствуют образованию задиров, а так же улучшают смазку поршня при движении его в цилиндре.

Следует так же отметить, что юбка поршня имеет форму конуса (в верху у донышка уже, внизу шире), а в плоскости, перпендикулярной оси поршневого пальца имеет форму овала. Эти отклонения от идеальной цилиндрической формы минимальные, то есть имеют всего несколько соток мм (эти величины разные — чем больше диаметр, тем больше отклонения).

Конус нужен для того, что бы поршень расширялся от нагрева равномерно, ведь в верху температура поршня выше, а значит и тепловое расширение больше. А раз у донышка диаметр поршня чуть меньше, чем внизу, то при расширении от нагрева поршень примет форму, близкую к идеальному цилиндру.

Ну а овал предназначен для компенсации быстрого износа на стенках юбки, которые стираются быстрее там где трение выше, а выше оно в плоскости движения шатуна.

Благодаря юбке поршня (точнее её боковой поверхности) обеспечивается нужное и правильное положение оси поршня к оси цилиндра мотора. С помощью боковой поверхности юбки, к цилиндру двигателя передаются поперечные усилия от действия боковой силы А (см. самый верхний рисунок в тексте, а так же рисунок справа) которая периодически воздействует на поршни и цилиндры, при перекладке поршней во время вращения коленвала (кривошипно-шатунного механизма).

Также благодаря боковой поверхности юбки осуществляется отвод тепла от поршня к цилиндру (так же как и от поршневых колец). Чем больше боковая поверхность юбки, тем лучше идёт отвод тепла, меньше утечка газов, меньше стук поршня при некотором износе втулки верхней головки шатуна (или при неточной обработке втулки — см. рисунок слева), впрочем как и при трёх компрессионных кольцах, а не двух (об этом я подробнее написал вот тут).

Но при слишком длинной юбке поршня больше его масса, больше трения возникает о стенки цилиндров (на современных поршнях для уменьшения трения и износа стали наносить антифрикционное покрытие на юбку), а лишняя масса и трение очень нежелательны в высоко-оборотистых форсированных современных (или спортивных) моторах и поэтому на таких двигателях юбку постепенно стали делать очень короткой (так называемая миниюбка) и постепенно почти от неё избавились — так и появился Т-образный поршень, показанный на фото справа.

Но и у Т-образных поршней есть недостатки, например у них опять же могут быть проблемы с трением о стенки цилиндра, из-за недостаточной смазываемой поверхности очень короткой юбки (причём на малых оборотах).

Более подробно об этих проблемах, а так же в каких случаях Т-образные поршни с мини юбкой нужны в некоторых двигателях, а в каких нет, я написал отдельную подробную статью вот здесь. Там же написано об эволюции формы поршня двигателя — советую почитать. Ну а мы думаю уже разобрались с устройством поршней и плавно переходим к технологиям изготовления поршней, чтобы понять какие поршни, изготовленные разными способами лучше, а какие хуже (менее прочные).

Поршни для двигателей — материалы изготовления.

При выборе материала для изготовления поршней предъявляют строгие требования, а именно:

  • материал поршня должен иметь отличные антифрикционные (антизадирные) свойства.
  • материал поршня двигателя должен иметь довольно высокую механическую прочность.
  • материал поршня должен иметь малую плотность и хорошую теплопроводность.
  • материал поршня должен быть стоек к коррозии.
  • материал поршня должен иметь малый коэффициент линейного расширения и быть по возможности близок или равен коэффициенту расширения материала стенок цилиндра.

Раньше, на заре двигателестроения, ещё со времён самых первых автомобилей, мотоциклов и самолётов (аэропланов), для материала поршней применяли серый чугун (кстати для поршней компрессоров тоже). Конечно же, как и у любого материала, у чугуна имеются как достоинства, так и недостатки.

Из достоинств следует отметить хорошую износостойкость и достаточную прочность. Но наиболее важное достоинство чугунных поршней, устанавливаемых в двигатели с чугунными блоками (или гильзами) — это такой же коэффициент теплового расширения, как и чугунного цилиндра двигателя. А значит тепловые зазоры можно сделать минимальными, то есть гораздо меньше, чем у алюминиевого поршня, работающего в чугунном цилиндре. Это позволяло существенно увеличить компрессию и ресурс поршневой группы.

Ещё один существенный плюс чугунных поршней — это небольшое (всего 10 %) снижение механической прочности при нагреве поршня. У алюминиевого поршня снижение механической прочности при нагреве ощутимо больше, но об этом ниже.

Но с появлением более оборотистых двигателей, при использовании чугунных поршней, на больших оборотах стал выявляться их главный недостаток — довольно большая масса, по сравнению с алюминиевыми поршнями. И постепенно перешли к изготовлению поршней из алюминиевых сплавов, даже в двигателях с чугунным блоком, или гильзой, хоть и пришлось делать алюминиевые поршни с гораздо бóльшими тепловыми зазорами, чтобы исключить клин алюминиевого поршня в чугунном цилиндре.

Кстати, раньше на поршнях некоторых двигателей делали косой разрез юбки, который обеспечивал пружинящие свойства юбки алюминиевого поршня и исключал его заклинивание в чугунном цилиндре — пример такого поршня можно увидеть на двигателе мотоцикла ИЖ-49).

А с появлением современных цилиндров, или блоков цилиндров, полностью выполненных из алюминия, в которых уже нет чугунных гильз (то есть покрытых никасилем или керонайтом) появилась возможность изготавливать алюминиевые поршни тоже с минимальными тепловыми зазорами, ведь тепловое расширение легкосплавного цилиндра стало практически таким же, как и у легкосплавного поршня.

Алюминиевые сплавы. Практически все современные поршни на серийных двигателях сейчас изготавливают из алюминиевых сплавов (кроме пластиковых поршней на дешёвых китайских компрессорах).

У поршней, выполненных из алюминиевых сплавов тоже имеются как достоинства, так и недостатки. Из основных достоинств следует отметить небольшой вес легкосплавного поршня, что очень важно для современных высокооборотистых двигателей. Вес алюминиевого поршня конечно же зависит от состава сплава и от технологии изготовления поршня, ведь кованный поршень весит значительно меньше, чем выполненный из того же сплава методом литья, но о технологиях я напишу чуть позже.

Ещё одно достоинство легкосплавных поршней, о которой мало кто знает — это довольно высокая теплопроводность, которая примерно в 3-4 раза выше, чем теплопроводность серого чугуна. Но почему достоинство, ведь при высокой теплопроводности и тепловое расширение довольно не малое и придётся и придётся и тепловые зазоры делать больше, если конечно цилиндр чугунный (но с современными алюминиевыми цилиндрами это стало не нужно).

А дело в том, что высокая теплопроводность не позволяет нагреваться донышку поршня более чем 250 °C, а это способствует гораздо лучшему наполнению цилиндров двигателей и конечно же позволяет ещё более повысить степень сжатия в бензиновых моторах и тем самым поднять их мощность.

Кстати, чтобы как то усилить отлитые из лёгкого сплава поршни, в их конструкцию инженеры добавляют различные усиливающие элементы — например делают стенки и донышко поршня толще, а бобышки под поршневой палец отливают более массивными. Ну или делают вставки из того же чугуна, я об этом уже писал выше. И конечно же все эти усиления увеличивают массу поршня, и в итоге получается, что более древний и прочный поршень, изготовленный из чугуна, проигрывает в весе легкосплавному поршню совсем чуть чуть, где то процентов на 10 — 15.

И тут любому напрашивается вопрос, а стоит ли овчинка выделки? Стóит, ведь у алюминиевых сплавов есть ещё одно отличное свойство — они раза в три лучше отводят тепло, чем тот же чугун. И это важное свойство незаменимо в современных высоко-оборотистых (форсированных и горячих) двигателях, у которых довольно высокая степень сжатия.

К тому же современные технологии производства кованных поршней (о них чуть позже) существенно повышают прочность и уменьшают вес деталей и уже не требуется усиление таких поршней различными вставками, или более массивными отливками.

К недостаткам поршней, выполненных из алюминиевых сплавов относятся такие как: довольно большой коэффициент линейного расширения алюминиевых сплавов, у которых оно составляет примерно в два раза больше, чем у поршней выполненных из чугуна.

Ещё одним существенным недостатком алюминиевых поршней является довольно большое снижение механической прочности, при повышении температуры поршня. К примеру: если легкосплавный поршень нагреть до трёхсот градусов, то это приведёт к снижению его прочности аж в два раза (примерно на 55 — 50 процентов). А у чугунного поршня при его нагреве прочность снижается ощутимо меньше — всего на 10 — 15%. Хотя современные поршни, выполненные из алюминиевых сплавов методом поковки, а не с помощью литья, при нагреве теряют прочность гораздо меньше.

На многих современных алюминиевых поршнях снижение механической прочности и слишком большое тепловое расширение устраняется более совершенными технологиями производства, которые заменили традиционное литьё (об этом ниже), а так же специальными компенсационными вставками (например упомянутые мной выше — вставки из нирезиста), которые не только увеличивают прочность, но и значительно уменьшают тепловое расширение стенок юбки поршня.

Поршень двигателя — технологии изготовления.

Ни для кого не секрет, что со временем, чтобы увеличить мощность двигателей, постепенно начали повышать степень сжатия и обороты моторов. А чтобы поднять мощность без особого ущерба для ресурса поршней, постепенно совершенствовались технологии их изготовления. Но начнём всё по порядку — с обычных литых поршней.

Поршни изготовленные методом обычного литья.

Эта технология самая простая и древняя, она применяется с самого начала истории авто и двигателестроения, ещё со времён первых чугунных поршней.

Технология производства поршней для самых современных двигателей обычным литьём уже почти не применяется. Ведь на выходе получается продукт имеющий изъяны (поры и т.д.) значительно снижающие прочность детали. Да и технология обычного литья в форму (кокиль) довольно древняя, она позаимствована ещё у наших древних предков, которые много веков назад отливали бронзовые топоры.

И залитый в кокиль сплав алюминия повторяет форму кокиля (матрицы), а потом деталь ещё нужно обработать термически и на станках, снимая лишний материал, что отнимает не мало времени (даже на станках с ЧПУ).

Литьё под давлением.

У поршня, изготовленного методом простого литья прочность не высока, из-за пористости детали и постепенно многие фирмы от этого способа отошли и начали отливать поршни под давлением, что значительно улучшило прочность, так как пористость почти отсутствует.

Технология литья под давлением, существенно отличается от технологии обычного литья топоров бронзового века и конечно же на выходе получается более аккуратная и прочная деталь, имеющая несколько лучшую структуру. Кстати, литьём алюминиевых сплавов под давлением в форму (ещё эту технологию называют жидкой штамповкой) отливают не только поршни, но и рамы некоторых современных мотоциклов и автомобилей.

Но всё же и эта технология не идеальна и если даже вы возьмёте в руки отлитый под давлением поршень и рассмотрев его, ничего не обнаружите на его поверхности, но это не значит, что и внутри всё идеально. Ведь в процессе литья, даже под давлением, не исключено появления внутренних пустот и каверн (мельчайших пузырьков), уменьшающих прочность детали.

Но всё же литьё поршней под давлением (жидкая штамповка) существенно лучше обычного литья и эта технология до сих пор применяется на многих заводах при изготовлении поршней, рам, деталей ходовой и других деталей автомобилей и мотоциклов. А кому интересно более подробно почитать о том, как делают жидко-штампованные поршни и о их преимуществах, то читаем о них вот здесь.

Кованные поршни автомобиля (мотоцикла).

Кованые поршни для отечественных автомобилей.

Эта наиболее прогрессивная на данный момент технология производства современных легкосплавных поршней, которые имеют множество преимуществ перед литыми и которые устанавливают на самые современные высоко-оборотистые моторы, с высокой степенью сжатия. У кованных поршней, изготовленных авторитетными фирмами, практически нет недостатков.

Но мне нет смысла писать о кованных поршнях подробно в этой статье, так как я написал о них две очень подробные статьи, которые каждый желающий сможет почитать, кликнув на ссылки ниже.

Вот вроде бы и всё, если что нибудь вспомню ещё о такой важной детали, как поршень двигателя, то обязательно допишу, успехов всем.

Материалы: http://suvorov-castom.ru/porshen-dvigatelya-pochti-vsyo-o-nyom/


Back to top