Роторный двигатель

Преобразуемое движение возвратно-поступательного характера полностью отсутствует в роторном двигателе. Образование давления происходит в тех камерах, которые создаются с помощью выпуклых поверхностей ротора треугольной формы и разными частями корпуса. Вращательные движения ротор совершает посредством сгорания. Это способно привести к снижению вибрации и увеличить скорость вращения. Благодаря повышению эффективности, которое обусловлено таким образом, роторный двигатель имеет размеры намного меньшие, чем обычный поршневой двигатель эквивалентной мощности.

Роторный двигатель имеет один самый главный из всех своих компонентов. Эта важная составляющая называется треугольным ротором, который совершает вращательные движения внутри статора. Все три вершины ротора, благодаря этому вращению, имеют постоянную связь с внутренней стеной корпуса. Посредством этого контакта образуются камеры сгорания, либо три объема замкнутого типа с газом. Когда происходят вращательные движения ротора внутри корпуса, то объем всех трех образуемых камер сгорания все время изменяется, напоминая действия обычного насоса. Все три боковых поверхности ротора работают, как поршень.

Внутри у ротора имеется шестерня небольшого размера с внешними зубьями, которая прикреплена к корпусу. Шестерня, которая больше по диаметру, соединена с данной неподвижной шестерней, что задает саму траекторию вращательных движений ротора внутри корпуса. Зубья у большей шестерни внутренние.

По той причине, что вместе с выходным валом ротор сопряжен эксцентрично, вращение вала происходит наподобие того, как ручка будет вращать коленвал. Выходной вал станет делать оборот три раза за каждый из оборотов ротора.

Роторный двигатель имеет такое преимущество, как небольшая масса. Самый основной из блоков роторного двигателя обладает небольшими размерами и массой. При этом управляемость и характеристики такого двигателя будут лучшими. Меньшая масса у него получается за счет того, что необходимость в коленвале, шатунах и поршнях просто отсутствует.

Роторный двигатель обладает такими размерами, которые гораздо меньше обычного двигателя соответствующей мощности. Благодаря меньшим размерам двигателя, управляемость будет намного лучше, а также сама машина станет просторнее, как для пассажиров, так и для водителя.

Все из частей роторного двигателя совершают непрерывные вращательные движения в одном и том же направлении. Изменение их движения происходит так же, как у поршней традиционного двигателя. Роторные двигатели являются внутренне сбалансированными. Это ведет к снижению самого уровня вибрации. Мощность роторного двигателя выдается намного более гладким и равномерным образом.

Роторно-поршневой двигатель имеет выпуклый специальный ротор с тремя гранями, который можно назвать его сердцем. Этот ротор совершает вращательные движения внутри цилиндрической поверхности статора. Роторный двигатель "Мазда" является самым первым в мире роторным двигателем, который был разработан специально для производства серийного характера. Данной разработке было положено начало еще в 1963 году.

Материалы: http://fb.ru/article/74491/rotornyiy-dvigatel-plyusyi-i-minusyi

2 ≫

Редкий год обходится в автомобильном мире без сенсаций. То вдруг один компоновочный принцип получает статистическое превосходство над другим, то появляется диковинной формы кузов, то наносит удар конкурентам «сверхкомфортабельный» автомобиль, то, наоборот, теснит соперников на рынке «сверхдешевый». Но есть одна проблема, которая все время владеет умами конструкторов заводов и фирм — это наделавший много шума тринадцать лет назад роторный двигатель. Между тем он почти так же стар, как и его поршневой собрат. Еще в 1799 году, спустя лишь тридцать лет после появления паровой поршневой машины, англичанин Д. Мардок построил первый паровой роторный двигатель шестеренчатого типа.

В двадцатом веке немало изобретателей пыталось создать роторный двигатель внутреннего сгорания. Было зарегистрировано свыше 30 тысяч патентов на изобретения в этой области. Однако из-за несовершенства уплотнений между роторами и корпусом все попытки оказались безуспешными.

Создателем работоспособного двигателя такого типа стал Феликс Ванкель. Он в течение многих лет в исследовательском институте занимался изучением разного типа уплотнений, работающих в условиях высоких давлений и температур. Немецкому изобретателю удалось найти верное решение идеи роторного двигателя. Первые патенты Ванкель получил в 1929 году. Через пять лет, совместно с фирмой БМВ, он построил экспериментальный мотор, оказавшийся, однако, далеким от совершенства. Свои исследования Ванкель продолжил после войны, когда стал сотрудничать с заводом НСУ. Много времени ушло на теоретические разработки, изучение и выбор наивыгоднейших параметров. Первый работоспособный мотор был построен в феврале 1957 года. И лишь семь лет спустя завод начал мелкосерийное производство автомобилей «НСУ-Спайдер» с роторным двигателем («За рулем», 1965, № 12). Позже был развернут серийный выпуск других моделей с «ванкелями»: НСУ-Ро80 («За рулем», 1968, № 4), «Мазда-110С космо спорт» («За рулем», 1970, № 2), «Мазда-Р100» и совсем недавно «Ситроен-М35» («За рулем», 1970, № 6).

Как работает роторный двигатель?

Его основная деталь, трехгранный ротор, вращается на игольчатом или скользящем подшипнике, установленном между ротором и эксцентриком, который составляет одно целое с валом мотора. К ротору прикреплена шестерня, а к боковой крышке картера двигателя — неподвижная шестерня, отношение зубьев которых равно 3:2. Таким образом, при вращении вала ротор не только движется вместе с ним, но и поворачивается относительно оси эксцентрика (как сателлит относительно оси водила в планетарном механизме). Благодаря этому при вращении обеспечивается постоянный контакт ребер ротора со

стенками рабочей полости корпуса. Ее конфигурация выбрана и выполнена таким образом, чтобы объем, ограниченный стенками рабочей полости, стенкой и двумя ребрами ротора, при вращении вала циклически изменялся. Рабочая смесь, всасываемая в эту постоянно меняющуюся по объему камеру через впускной клапан, последовательно сжимается, воспламеняется одной или двумя свечами, расширяется, поворачивает ротор, совершая работу, и выходит в атмосферу через выпускной канал. Для герметизации камер грани роторов снабжены уплотнителями.

Ротор вращается втрое медленнее вала. За полный оборот ротора совершается три рабочих такта — каждая из трех камер успевает пройти мимо свечи, которая воспламеняет сжатую в камере смесь. Следовательно, у «ванкеля» три рабочих такта совершаются за три оборота его вала, и по равномерности работы этот двигатель подобен одноцилиндровому двухтактному или двухцилиндровому четырехтактному.

Рабочий объем одной камеры представляет собой разность между ее максимальным и минимальным объемами, а степень сжатия выражается их отношением. У мотора «НСУ-Спайдер», например, эти величины составляют 497,5 см3 и 8,5.

Поршневой четырехтактный одноцилиндровый двигатель за два оборота коленчатого вала сжигает количество горючей смеси, равное рабочему объему цилиндра. Роторный же за два оборота сжигает вдвое больше смеси. Поэтому условились считать его рабочий объем равнозначным двойному объему камеры. Таким образом, «НСУ-Спайдер» можно сравнивать по этому параметру с 995-кубовым поршневым двигателем.

Достоинства роторного двигателя.

Прежде всего, он очень компактен. Так, мотор японского автомобиля «Мазда-110С космо спорт» при мощности 110 л. с. имеет длину 508 мм, ширину 594 мм, высоту 537 мм и весит 102 кг. Столь небольшие габариты позволили установить его в моторном отсеке автомобиля «Мазда-Р100», где мог бы разместиться поршневой двигатель лишь вдвое меньшего литража и мощности.

В сравнении с поршневыми роторные двигатели менее металлоемки и, следовательно, имеют меньший удельный вес. Важным, но не решающим, правда, преимуществом этих моторов является их хорошая уравновешенность. Двухроторный НСУ-Ро80 с эксцентриками вала, размещенными под углом 180 градусов, равноценен четырехтактному четырехцилиндровому поршневому двигателю. В последнее время появились и трехроторные конструкции, например, «Мерседес-Бенц-К111» («За рулем», 1970, № 1), имеющие еще более совершенную уравновешенность. На женевской выставке этого года демонстрировался экспериментальный спортивный автомобиль «Мерседес-Бенц» с четырехроторным мотором (4800 см3, 350 л. с. при 7000 об/мин), весящим 180 кг.

Автомобиль «Мазда-Р100» с роторным двигателем имеет классическую компоновку (в то время как НСУ-Ро80 и «Ситроен-М35» выполнены с передними ведущими колесами).

Однако рано говорить о том, что приход «ванкелей» должен поставить крест на поршневых конструкциях.

Минусы роторных двигателей.

Минусы роторных моторов еще довольно существенны, и это препятствует их широкому распространению. Поскольку распределение в них осуществляется кромкой ротора, неизбежен частичный выброс свежей смеси в выпускное окно. Велика утечка смеси из одной камеры в другую и при прохождении кромки ротора над углублением в рабочей полости для свечи. Наконец, вызываемая силами инерции вибрация уплотнительных пластин и прижимающих их пружин также способствует нежелательному прорыву сжатой смеси в соседнюю камеру. Все это неизбежно для нынешней конструктивной схемы и в сумме приводит к тому, что автомобиль с роторным двигателем расходует горючего на 20—30 процентов больше, чем равная по мощности, рабочему объему и весу машина с поршневым.

Другим, уже органическим недостатком «ванкеля» является то, что отношение поверхности камеры сгорания к ее объему очень велико. Температура стенок камеры поэтому ниже, чем у поршневого двигателя. Многие углеводороды, входящие в состав топлива, не успевают полностью сгорать, и отработавшие газы содержат больше вредных примесей, чем «выхлоп» поршневого мотора.

Еще один «минус» — роторный двигатель плохо приспосабливается к изменениям нагрузки, у него мал рабочий диапазон чисел оборотов. Правда, против этого недостатка найдена контрмера — карбюратор с двумя последовательно работающими смесительными камерами (диаметр их составляет 18 и 32 мм у НСУ и 21 и 28 мм у «Мазды»).

Характеристики «ванкелей» все еще оставляют желать лучшего. По сравнению с поршневыми двигателями роторные недостаточно гибки в работе. Компенсировать это нежелательное свойства можно усложнением трансмиссии автомобиля. Так, у НСУ-Ро80 и «Мерседес-Бенц-К111» узкий диапазон оборотов (всего лишь около 1000—2000 в минуту) потребовал применения пятиступенчатой и даже автоматической (НСУ-Ро80) коробки передач. Можно улучшить наполнение двигателя смесью на малых оборотах и таким образом расширить диапазон работы ценой уменьшения максимальной мощности. Для этого, так показал опыт, необходимо разместить впускные окна не в стенке корпуса (как у НСУ-Ро80 или «Мерседес-Бенц-К111»), а в боковых крышках («Мазда», «Кертисс-Райт»). Утечка смеси на малых оборотах уменьшается, но одновременно ухудшается наполнение на высоких оборотах.

НСУ-Ро80 и «Мацуда-100С», имеющие степень сжатия 9,2—9,4, работают на бензине с октановым числом соответственно 88 и 91. Масло в двигателе сменяется через 20000 (НСУ-Ро80) и 10000 км («Мазда-100С»), а замена свечей (склонных к замасливанию) необходима через 10 000 км.

Картеры изношенных двигателей не подлежат ремонтной расточке как цилиндры поршневых моторов — их восстанавливают электролитическим способом, нанося слой нового покрытия в специальных мастерских.

Уплотнения, эффективные и надежные, долгое время были проблемой для изобретателей роторных моторов. И сегодня еще этот узел, работающий в очень тяжелых условиях (высокие температура и давление, значительные инерционные нагрузки), доставляет немало хлопот конструкторам. Для смазки деталей уплотнений пришлось впрыскивать масло в карбюратор.

Отложения нагара препятствовали перемещению уплотнительных пластин ротора в пазах.

Много трудностей создавал значительный и вдобавок неравномерный износ самих пластин. Подбором материалов его удалось заметно снизить. Так, завод НСУ, сначала делавший пластины угольными, сейчас склонился в пользу хромистого чугуна, близкого по составу к тому, что идет на поршневые кольца. Подобный материал избрал и завод «Кертисс-Райт» (США). А «Мазда» все же держится угольных пластин.

Внутреннюю полость алюминиевого картера для уменьшения износа покрывают либо твердым хромом («Мазда»), либо слоем карбида вольфрама толщиной 0,23 мм («Кертисс-Райт»). Более редкое покрытие применяет НСУ — слой никеля с пылевидными частицами карбида кремния. Такие дорогие технологические ухищрения все же оправдывают себя — за 100 часов работы износ рабочей полости не превышает 0,007— 0,01 мм.

Сегодня роторные двигатели способны переносить достаточно продолжительно высокие нагрузки. Так, машины «Мазда-Р100» в 1969 году заняли пятое и шестое места на гонках в бельгийском городе Спа. За 24 часа они прошли соответственно 4046 и 3975 км, показав средние скорости 168,6 и 165,5 км/час.

Ротор является наиболее сложной частью двигателя. Чаще всего его делают из чугуна. В нем монтируются самые ответственные детали — уплотнительные пластины, прижимаемые к рабочей поверхности полости ленточными пружинами. Ротор охлаждается изнутри маслом. Для того чтобы уплотнительные пластины изнашивались равномерно, их делают разрезными, а цилиндрические сухарики обеспечивают правильную установку пластины относительно ротора.

Во время работы двигателя ротор непосредственно не соприкасается с внутренней полостью — контакт осуществляется при помощи радиальных и торцовых пластин. Это означает, что двигатель может работать сразу же с полной нагрузкой независимо от приработки деталей.

Исследования в области роторных двигателей ведутся сегодня почти двумя десятками заводов во всем мире. Многие из них купили лицензию у НСУ («Тое Когё», «Даймлер-Бенц», «Кертисс-Райт», «Альфа-Ромео», «Роллс-ройс», МАН, «Янмар», «Сакс», «Перкинс»). Некоторые предприятия, в том числе «Рено» во Франции, научно-исследовательские организации в СССР, Чехословакии, Польше занимаются самостоятельными разработками.

Каковы же перспективы роторных двигателей?

Многие специалисты считают, что они вряд ли смогут «найти широкое применение на мотоциклах, но оптимистически смотрят на использование их в качестве лодочных моторов, переносных силовых агрегатов, двигателей для вертолетов. Что касается установки «ванкелей» на автомобилях, то пока лишь три завода («Тое Когё», НСУ и «Ситроен») отважились на такой шаг, а «Даймлер-Бенц», «Кертисс-Райт» и другие ограничиваются пока опытными образцами.

Объем производства этих машин пока невысок — примерно 15—20 тысяч в год. Однако в нынешнем году японская фирма «Тое Когё» обещала выпустить свыше 100 тысяч автомобилей «Мазда» моделей «110С» и «Р100». Естественно, что с масштабами производства связаны себестоимость и цена автомобиля. В 1969 году НСУ-Ро80 и «Мазда-100С» стоили в продаже на 35—40 процентов дороже равных им по мощности, весу и вместимости легковых машин с поршневыми двигателями. «Мазда-Р100» в Японии (в Европу она пока не ввозится) в полтора—два раза дороже аналогичных машин с поршневым мотором. Однако, по расчетам экономистов, «ванкели» при равных объемах производства с нынешними поршневыми моторами обойдутся в полтора раза дешевле их.

Можно ли сегодня сделать решительный прогноз о дальнейшей судьбе роторного двигателя? Пока он проходит «акклиматизацию» в мире моторов, постепенно изживая «минусы» и наращивая «плюсы». Очевидно, в ближайшие годы о вытеснении поршневого двигателя роторным говорить не приходится.

Материалы: http://own.in.ua/view/item/1150

3 ≫

С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.

Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, - спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.

После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле».

Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже.

В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.

Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых.

В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС.

Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.

Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов.

Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия.

Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.

Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания. В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров. После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Также роторный двигатель очень требователен к обслуживанию. Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.

На данный момент существует пять разновидностей данных типов агрегатов:

  1. Роторные моторы с возвратно-вращательными движениями вала.
  2. С равномерным вращением вала. При этом в его конструкции не используются какие-либо уплотнительные механизмы. Расположение камер сгорания у них спирального типа.
  3. Агрегаты с пульсирующе-вращательным движением, направленным в 1 сторону.
  4. С планетарным вращением вала, без уплотнительных элементов. Яркий пример тому - двигатель Ванкеля.
  5. РПД с равномерной работой рабочих элементов и спиральным типом расположения камер сгорания.

История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля.

Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» - модели 2101 - за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.

Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй - порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.

В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.

Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества:

  • Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд.
  • Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров).
  • Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил.
  • Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах.
  • Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.

Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения.

Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.

Материалы: http://mproguru.ru/raznoe/tehnika-i-tehnologii/105544-rotornyj-dvigatel-princip-raboty-pljusy-i-minusy.html


Back to top