Машина на водороде

1 ≫

Рано или поздно запасы нефти по всему миру подойдут к концу. Естественно, это вряд ли произойдет прямо завтра, но уже сегодня цены на топливо на основе нефти существенно выросли. Данный факт стал хорошим стимулом для разработчиков, которые занимаются изобретением топлива будущего. К тому же это должно быть не просто топливо, а, желательно, возобновляемое топливо. Многие уверены, что машина на водороде - игрушка. Давайте посмотрим, так ли это.

Топливо будущего

Про такое топливо еще давным-давно писал в своих приключенческих романах известный писатель Жюль Верн. В одном из своих романов на тему альтернативного источника энергии писатель сказал, что продуктом для энергии станет обычная вода. И так случилось. Да, это не вымысел.

Вода, а точнее, один из ее составляющих - водород - не только первый химический элемент. Это еще и источник энергии будущего. И представьте себе, это будущее уже совсем рядом.

Сегодня японские компании производят двигатели, которые работают только на таком виде топлива. Машина на водороде от «Тойоты» - первый в мире серийный автомобиль, оснащенный данным двигателем.

Машина представляет собой седан с четырьмя дверями. В нем установлен электрический двигатель мощностью в 151 л. с. Вы спросите, при чем здесь водород, ведь мотор электрический? Давайте разберемся.

Технологии «Тойоты-Мирай»

Электрический двигатель запитан от специального конвертера. А он уже получает энергию непосредственно из водорода. Газ содержится в баках автомобиля под высоким давлением. Емкости изготовлены из углеродных волокон.

Но для реакции еще необходим кислород. Да, это так. Кислород машина получает прямо из радиатора во время движения. Одной заправки двух баков водородом будет достаточно, чтобы преодолеть на автомобиле до 480 км. Заправка занимает всего 3 минуты. За данное время в баки машины зальется 170 литров газа. В среднем машина на водороде расход составит порядка 4,7 литра на 100 км пробега.

Как это работает?

Когда водород вступает в реакцию с кислородом, происходит бурная химическая реакция, в ходе которой вырабатывается электрическая энергия. Она сохраняется в аккумуляторе. В движение автомобиль приводится синхронным двигателем переменного тока.

Технические характеристики «японца»

Максимальная скорость, на которую способна машина на водороде, составляет 180 км/ч. До 100 км автомобиль способен разогнаться всего за 9 секунд.

Кроме того что на «японце» можно ездить и не наносить вреда экологии, также данный автомобиль можно применять в домашних условиях в качестве электростанции. Инженеры и конструкторы, которые принимали участие в разработке новинки, утверждают, что при помощи такой системы ток подается на целый дом. Таким образом, можно свободно пользоваться бесплатным электричеством в течение 5 дней.

Скидки на топливо для покупателей

Те жители Японии и США, которые приобретут автомобиль на водороде, получат большие скидки и бесплатную заправку своих машин. Авторы грандиозного проекта уверены, что их ждет успех. Однако другие автопроизводители не сидят сложа руки. И вскоре потребители могут получить большой выбор машин на альтернативном топливе.

Великий и ужасный

О том, что водород может стать номером 1 в вопросах альтернативного топлива, говорят достаточно давно. Еще до экономического кризиса в далеком 2008 году СМИ постоянно печатали репортажи о том, как прекрасно можно использовать силу водорода.

Любая машина на водороде считалась прорывом, а ее создателей возводили чуть ли не в лик святых. Неподготовленные читатели и автолюбители уверенно считали это настоящим прорывом, но нужно сказать, что это не так.

150 лет назад

Реальное положение вещей немного отличается от того, что пишут в блогах, посвященных альтернативной энергетике. Водород в таком качестве используется уже около 150 лет. Автомобиль на водороде помог выиграть войну.

Самый первый двигатель внутреннего сгорания на таком топливе был построен Ленуаром в 1860 году. Затем, в 1942 году, случился достаточно массовый перевод всей автомобильной техники именно на водородный источник энергии.

Это случилось в блокадном Ленинграде. Изначально водород должен был применяться в системах ПВО для аэростатов. Однако великие русские инженеры сумели изменить ситуацию.

Как это было?

Аэробусы применялись для защиты города. Эти, наполненные до краев водородом, летающие объекты из резины не давали возможности фашистским самолетам вести прицельную стрельбу по городу.

Однако резиновая воздушная защита имела один огромный минус. Из-за того, что оболочка аэробуса пропускала этот газ, аэробусы снижались. Вместо водорода его место занимали различные водяные пары, а также другие газы. Поэтому иногда аэробусы опускали на землю, стравливали и заправляли заново.

Для заправки аэробусов применялись лебедки и бензиновые грузовики ГАЗ АА. А в условиях блокады бензин стоил в Ленинграде очень дорого. Война истощила запасы, а Борис Шелиц, который тогда был военным техником, служил как раз на заправочной станции этих самых аэробусов. Так вот. Не стало бензина то есть совсем. Он пробовал использовать для спуска летающих тел электрические лебедки. Однако вскоре закончилось и электричество. Было испробовано множество различных источников альтернативной энергии.

Однажды военный техник подумал, что водород можно использовать иначе, чем просто стравливать в небо. Ведь тепло, которое выдает этот газ при сгорании, в 4 раза превышает таковое от угля, в 3 раза - от бензина и других нефтепродуктов. Шелиц попросил разрешения на эксперимент, и ему его подписали. Нужно ли говорить, что так появилась машина на водороде?

Принцип работы

Схема ученого сводилась к присоединению аэробуса при помощи шланга ко входному коллектору двигателя автомобиля. Водород попадал прямо в цилиндры, минуя при этом карбюратор. Дозировка водорода, а также необходимого для реакции воздуха, выполнялась при помощи дроссельной заслонки или же педалью «газа».

Первые опыты Шелиц проводил в мороз. Двигатель завелся легко, несмотря на температуру за бортом. Мотор проработал стабильно и долго. Правда, аэростаты взорвались, а Шелица контузило. После этого была придумана специальная система защиты. Она основана на водяном затворе, который исключал загорание смеси при вспышках в коллекторе мотора. Так машина на водороде стала более безопасной.

Кстати, после того как один из двигателей разобрали, на нем практически не было следов износа. В цилиндрах не было нагара, а выхлопные газы были лишь водяным паром.

Водород спасает жизни

Изобретенная таким образом машина на водороде во время войны помогла спасти множество жизней, выстоять блокаду, а сам Шелиц получил за эту разработку награду, и даже запатентовал ее. Разработчик был награжден Красной Звездой.

Водородное такси

После войны, когда водород уже негде было достать, об этом стали забывать. Однако некоторые люди еще помнят, как на Украине, в Харькове, работало такси, но не простое, а водородное.

Сэкономить вместе с газом Брауна

В большинстве даже самых современных автомобильных ДВС топливо сгорает далеко не оптимально. Около 60% смеси воздуха и горючего просто-напросто теряются в недрах выпускного коллектора. В коллекторе смесь сгорает не полностью, а при этом еще и образует достаточно токсичные выхлопные газы.

Можно использовать водородный генератор. Это принципиально новое оборудование, которое позволит значительно сэкономить на топливе в машине. Большинство таких устройств обладают стандартной принципиальной схемой. Однако непосредственно генератор водорода для автомобилей различных производителей может иметь определенные различия.

Водород в качестве добавки к топливу хотели использовать давно. Но тогда не было систем, позволяющих оптимизировать смесь топлива и так называемого газа Брауна, который подавался в цилиндры.

Генератор водорода для автомобиля в своей работе применяет принцип электролиза. Вода здесь применяется в качестве катализатора. Но она не разлагается на две составляющие – кислород и водород. В современных генераторах используют не что иное, как газ Брауна. Это гидроген коричневого или же зеленого цвета. Иногда его называют водяным газом или оксигидрогеном. Формула его HHO. Его отличие в том, что он полностью безопасен и не взрывается. К тому же весь газ, который выработается, полностью поступит в цилиндры.

Подобные генераторы состоят из устройства, которое производит электролиз, и емкости. Процессы электролиза контролируются специальным модулятором. В инжекторных моторах конструкция также предусматривает оптимизатор. Он позволяет в автоматическом режиме регулировать соотношение смести топлива и воздуха с газом Брауна.

Виды катализаторов

Устройства, которые используются в электролизерах, бывают простые, с разделенными ячейками и сухого типа.

В первом случае электролизер имеет самую простую и достаточно примитивную конструкцию. Управление им тоже очень простое. Устройство способно выдавать до 0,7 л газа за минуту. Он предназначается для автомобилей с объемом двигателя до 1,4 л.

Катализатор с раздельным типом ячеек - уже нечто более эффективное. Здесь в комплекте с оборудованием имеется все необходимое программное обеспечение. Устройство может выдать порядка 2 л в минуту. Данный аппарат имеет максимальную эффективность.

Устройство сухого типа применяется преимущественно на машинах с достаточно длительными рабочими циклами. Производительность у него средняя. Она зависит от того, сколько пластин в этой конструкции. Так как пластины имеют открытое расположения, то получается обеспечить хорошее охлаждение.

Как сделать топливную ячейку для авто?

Топливную ячейку или устройство, которое будет вырабатывать водород из воды и размещаться на борту автомобиля, можно сделать самостоятельно. Сгенерированный газ затем необходимо подать во впускной коллектор. Так можно добиться существенного снижения расхода топлива, а в некоторых случаях можно увеличить мощность автомобиля.

В Соединенных Штатах генератор водорода для автомобиля производится на предприятиях, а приобрести его можно за 300 долларов. Однако мы попытаемся сделать то же самое, но своими руками.

Что нужно для сборки?

Для создания этого устройства нам понадобится канистра из полиэтилена, пластины и металлические электроды, провода для соединения, хомуты, шланги, а также герметик и лента для уплотнения. Также нужна силиконовая резина.

Инструкция по сборке

Для того чтобы сделать автомобиль на водороде своими руками, нужно найти подходящую по объему емкость. В ней будет обычная вода. Внутрь емкости, а в данном случае пластиковой канистры, можно установить металлические пластины. Будет лучше, если они будут из нержавеющей стали. К пластинам необходимо подвести электроды.

Крышка должна очень легко сниматься или же герметически закрываться и легко наполняться водой. Верхняя часть самодельного генератора должна иметь трубку для отвода водорода прямиком во впускной коллектор вашего автомобиля. Обязательно нужно надежно загерметизировать крышку. Водород и кислород - весьма опасные газы. Затем нужно заизолировать пространство между пластинами. Так можно улучшить выработку газов и уменьшить возможные потери.

При работе данного генератора нужно внимательно следить, чтобы выводы от электродов и наших пластин не разболтались. Это влечет за собой риск пожара. Корпус нашего генератора также должен быть максимально надежным. Заизолировать крышку поможет силиконовая резина.

Модернизируем генератор

Для того чтобы улучшить систему добычи водорода, добавьте к этой системе еще одну емкость. Она должна находиться немного выше, чем первая. Соединить их можно при помощи трубок. Так можно более эффективно использовать систему.

Электронный блок

Данную часть генератора можно также собрать своими руками, особенно если есть познания в сфере электроники. Если таких познаний и навыков нет, то лучше обратиться к специалистам в этих областях. Блок управления должен в автоматическом режиме изменять ток, который подается на пластины, исходя из оборотов мотора.

Мощность можно установить лишь опытным путем на холостых оборотах мотора, а также под нагрузкой. Электронный блок должен получать информацию с датчиков автомобильной системы управления.

После монтажа этого генератора нужно еще раз удостовериться в герметичности и надежности всех соединений этой конструкции. Утечка опасна не только вероятностью взрыва, такая машина будет вести к повышенному расходу топлива. В итоге эффект будет крайне отрицательным. Но в целом такая машина на водороде, своими руками сделанная, позволяет экономить от 25% до 40% топлива.

Подобная техника и такие способы экономии топлива уже давно и успешно используются во всем мире. Известный актер Арнольд Шварценеггер уже давно ездит на комбинированной машине, которая работает на бензине с водородом. Автомобиль обошелся кинозвезде в 150 тысяч долларов. Расход топлива на этом комбинированном двигателе составляет 5,8 л на 100 км.

Сегодня такая машина на водороде в России тоже может быть очень актуальной.

Итак, мы выяснили все особенности и принцип работы автомобилей на данном экологическом виде топлива. Как видите, это вполне реальная альтернатива сегодняшнему бензину. И есть надежды, что уже в ближайшие десятилетия человечество перейдет на новую ступень развития, где по улицам будут ездить автомобили, работающие на водороде.

Источники: http://fb.ru/article/179037/mashina-na-vodorode-generator-vodoroda-dlya-avtomobilya

2 ≫

После того как все государства мира объявили курс на снижение выбросов вредных веществ, производители транспортных средств задумались об использовании альтернативных источников энергии. Причём они начали вести разработки не только в области электромобилей, но и в направлении использования водорода в качестве топлива для автомобилей. При этом различные компании рассматривают собственные технологии, которые обладают массой принципиальных отличий. Поэтому стоит подробнее рассмотреть авто на водороде, чтобы понять, что может ожидать нас в ближайшем будущем.

Автомобили на водороде — это довольно перспективное направление в поиске альтернативных источников энергии

Двигатель внутреннего сгорания

Вспомните, почему водород называют «гремучим газом» — правильно, он очень легко взрывается с выделением огромного количества энергии. Почему бы не использовать эту его особенность для приведения в движение автомобилей? Именно так решили специалисты компаний Mazda и BMW, которые несколько лет назад представили свои прототипы автомобилей, работающих на водороде, поступающем в обычный двигатель внутреннего сгорания.

При этом инженеры BMW вполне справедливо решили, что экспериментировать лучше с более крупным двигателем, который позволит варьировать технические характеристики в очень широком диапазоне. Так появился на свет автомобиль седьмой серии, который оснащался крупным баком для сжатого водорода — при рабочем объёме мотора он обладал производительностью всего в 260 лошадиных сил и расходовал около 50 литров горючего на сто километров пути. Кроме того, фирма BMW экспериментировала и с автомобилями на сжиженном водороде — для этого использовались специальные криогенные баки, которые обладали огромной стоимостью, сопоставимой с ценой самой платформы машины — это делалось для увеличения запаса хода. Однако отличительной чертой всех экспериментальных автомобилей BMW, работавших на водороде, было наличие традиционной бензиновой системы питания — она позволяла перейти на обычное горючее при исчерпании запаса водорода или при неполадках, связанных с его подачей.

А вот Mazda пошла другим путём, решив не ограничиваться в своих экспериментах — японцы смонтировали установку питания водородом на автомобиле RX-8, оснащённом роторным двигателем Ванкеля объёмом 1,3 литра. К сожалению, результат оказался провальным — мощность упала с 240 до 100 лошадиных сил, в расход топлива возрос почти до 60–70 литров на сотню километров. В отличие от BMW 7, которая сдавалась в лизинг в США и странах Европы, Mazda RX-8, работающая на водороде, так и осталась в виде прототипа. В настоящее время обе компании свернули эти исследовательские программы, сосредоточившись на других направлениях развития альтернативной энергетики.

Видео об автомобилях на водороде:

Причину понять легко, если углубиться в отчёты инженеров — они столкнулись с такими серьёзными проблемами, как:

  • Сниженный ресурс мотора;
  • Частые поломки, связанные с разрушением стенок цилиндров, клапанов и поршней;
  • Малый запас хода;
  • Частые утечки, грозящие возгоранием или даже взрывом.

Конечно, многие небольшие исследовательские институты создавали водородные автомобили, работавшие по принципу сгорания «гремучего газа», и обладавшие лучшими характеристиками, чем бензиновые аналоги. Однако стало понятно, что двигатель автомобиля необходимо изначально разрабатывать под водород — а производители оказались не готовыми к таким сомнительным инвестициям.

Топливные ячейки

Решение проблемы пришло из области космонавтики — так как сжигать горючее для получения электроэнергии на орбите нерационально, учёные разработали специальные топливные ячейки, в которых протекала химическая реакция с выделением огромного количества электроэнергии. При прохождении водорода сквозь такую ячейку, наполненную каталитическим материалом, происходит его соединение с кислородом, в результате которого образуется вода. Соответственно, пользователь получает только плюсы — никаких вредных веществ, на выходе только чистая вода и определённый запас электроэнергии. Остаётся только запастись нужным количеством водорода.

Автомобиль на водороде, работающий с применением топливных ячеек, функционирует по принципу электромобиля — в нём отсутствует двигатель внутреннего сгорания, который полностью заменён электрическим мотором. Энергия, полученная от реакции водорода с кислородом, накапливается в аккумуляторах — а некоторые производители, ориентированные на достижение автомобилем хороших динамических характеристик, используют суперконденсаторы, которые позволяют максимально быстро отдавать полученный заряд. Благодаря этому преодолевается один из недостатков топливных ячеек на водороде — они являются инертными, то есть не могут изменять свою отдачу по желанию водителя автомобиля.

Основной плюс, которым обладает машина на водороде, использующая топливные ячейки в качестве источника энергии — сочетание в ней лучших характеристик автомобилей с двигателями внутреннего сгорания и электромобилей. Запас хода очень высок — особенно в случае, когда батареи можно заряжать не только от реакции водорода с кислородом, но и от обычной электрической сети. Вместе с тем отсутствие агрегата, сжигающего углеводородное топливо, позволяет получить просто огромное количество преимуществ:

  • Отсутствие вредных выбросов — как и при сгорании водорода, в топливных ячейках образуется только водяной пар, который не наносит вреда окружающей среде.
  • Меньшая масса — кстати, комбинация водородных топливных ячеек, электродвигателя и аккумуляторов имеет меньшие габариты и вес, чем у батарей и мотора в традиционном электромобиле при сходных характеристиках и запасе хода.
  • Уменьшение количества движущихся и соприкасающихся между собой частей в несколько раз — за счёт этого существенно повышается ресурс эксплуатации транспортного средства.

Если же рассматривать водородный автомобиль, который оснащается двигателем внутреннего сгорания, адаптированным к этому виду топлива, то пока у него больше минусов, чем положительных сторон. Однако отчёты научно-исследовательских институтов, которые занимаются разработками в этом направлении, позволяют надеяться на то, что в скором будущем ситуация коренным образом поменяется. Уже сообщается о том, что двигатели автомобилей, которые изначально создавались для работы на водороде, имеют следующие характеристики:

  • Ресурс эксплуатации, увеличенный на 20–30%, а также уменьшенная вероятность возникновения меньших поломок.
  • Мощность, большая на 15–20%, больший КПД, означающий лучшее использование энергетического потенциала горючего.
  • Стоимость пробега, в 2 раза меньшая, чем аналогичный показатель для бензина — однако только при условии промышленного производства водорода.

Вот только стоимость двигателей, работающих на водороде, очень уж высока — как в силу применения дорогостоящих инновационных материалов, так и благодаря штучному производству, ведущемуся по обходным технологиям.

К сожалению, не обходится и без минусов — впрочем, это касается не только водорода, но и всех прочих технологий альтернативной энергетики, работа над которыми ведётся относительно недавно. С точки зрения рядового потребителя пока существенным недостатком является высокая стоимость производства топлива — относительно недорого можно купить только водород, создаваемый в промышленных масштабах — он является редкостью, так как заводов по выпуску этого газа пока относительно немного. Кроме того, при проведении опросов в странах, где уже продано либо сдано в лизинг достаточно много автомобилей, работающих на водороде, результаты показали, что очень многие люди боятся взрыва «гремучего газа», хотя о таких случаях они даже не слышали. Действительно, на испытаниях нередко случались возгорания в результате утечки водорода, однако в серийное производство были отправлены только автомобили с многоуровневыми системами безопасности, предотвращающими возникновение взрыва.

Однако благодаря применению многих инновационных технических решений водородная машина является не только экономичной и безопасной, но и дорогой. В частности, компания BMW никогда не разглашала стоимость автомобиля седьмой серии, работающего на водороде, разрешая только брать его в лизинг. Однако некоторые эксперты говорят о том, что его рыночная цена могла бы быть установлена на уровне 1,2–1,5 миллиона долларов. Даже наиболее дешёвые автомобили, выпускаемые Honda и Toyota, стоят не менее 30–50 тысяч долларов при минимальном уровне оснащения — и то, только благодаря демпинговой политике компаний и компенсациям, выделяемых правительством Японии. Стоит сказать и о том, что топливные ячейки и баки не могут быть долговечными в силу длительной эксплуатации в условиях агрессивной среды — и если ячейки можно выпускать в сменном виде, то на ремонт бака придётся затратить немало денег.

Пришло время поговорить о главном — где заправлять автомобиль, работающий на водороде? Говорить о создании сети заправок даже в Японии, США и Германии очень рано — пока они представляют собой единичные экземпляры. В то же время строительство соответствующей инфраструктуры для электромобилей идёт полным ходом, что позволяет получить сведения о приоритетах, которые устанавливаются современным обществом и государственными учреждениями. Заправлять водородом машину с использованием самодельных приспособлений очень опасно — вероятность взрыва будет невероятно высокой.

Сейчас приходится слышать о том, что водород является топливом будущего — однако стоит вспомнить о том, что подобные слоганы звучали во всём мире ещё в конце 60-х годов — причём Советский Союз, в котором исследования свойств этого газа шли полным ходом, исключением не был. Несмотря на всё прошедшее время, водородные автомобили так и остались прототипами, не слишком пригодными к серийному производству и эксплуатации на дорогах общего пользования. Однако разработки не прекращаются, несмотря на то, что пока положительные результаты были достигнуты только единичными компаниями, начавшими мелкосерийное изготовление таких автомобилей. Кроме того, необходимо вспомнить о том, что водород является даже более безопасным для окружающей среды источником энергии, чем электричеством. Ведь несмотря на развитие энергетики, в мире до 70% электростанций работают на таких «грязных» видах топлива, как нефть и уголь.

Источники: http://365cars.ru/istoriya/avtomobili-na-vodorodnom-toplive.html

3 ≫

Начало 21-го века, как и начало XX века, это время перемен. Вновь перед населением Земли замаячила технологическая революция и вновь главное место в ней занимают автомобили. Как и сто лет назад быстрыми темпами начали развиваться альтернативные виды транспорта, не связанные с привычными нам двигателями внутреннего сгорания. Все чаще можно видеть на дорогах гибриды которые приводятся в движение электродвигателем и ДВС, в развитых странах входят в обиход электрокары и совсем недавно, каких-то 7-10 лет назад, ученные и инженеры пророчили большое будущее автомобилям с ДВС, работающим на самом распространенном элементе во вселенной- водороде. Все это человечество проходило в начале прошлого столетия. А потому, вновь подтверждает свою актуальность распространенное изречение: «Все новое- это хорошо забытое старое».

Сейчас Планета переживает новый кризис, нефтяной. Только связан он не с дефицитом черного золота, ставшего на 100 лет локомотивом развития человечества, а с перенасыщенностью данного вида товара на рынке. Это, быть может и есть тот первый сигнал, говорящий о том, что «нефтяной век» подходит к концу. Как говориться, каменный век закончился не потому, что закончились камни. Поэтому так важно развивать запасной план на случай если…

21 век, в автомобильном мире, будет веком распространения технологий будущего. Но не всем новым технологиям суждено выиграть в естественном отборе.

И так, менее десяти лет назад единственной реальной альтернативой ископаемым видам топлива был водород. Прошли годы, а никаких серьезных подвижек в этом направлении сделано не было. Наоборот, аутсайдер того времени- электрокар, из пешек перешел в дамки, с появлением Tesla и разработкой ими очень надежных и прогрессивных аккумуляторов всем стало ясно- электрические автомобили- это всерьез и надолго.

Почему так получилось? Ведь водородный ДВС был практически идеальным способом приводить в движение автомобиль. Он не требовал больших вложений в разработку нового агрегата (водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания). По данным статистики, в случае использования водородного топлива мощность мотора упадет до 82-65%, по сравнению с обычным бензиновым мотором. Но внеся небольшие изменения в систему зажигания- мощность того же двигателя увеличится до 118%.

Первый плюс ДВС работающего на водороде- необходимы минимальные изменения в конструкцию для того чтобы мотор перевести на новый вид топлива

Экологичность такого вида топлива также не поддается сомнениям. Последняя серийная разработка японской автомобилестроительной корпорации Toyota доказала, что «выхлоп» водородного автомобиля можно… пить. Это продемонстрировал один зарубежный автожурналист. Сделав несколько глотков воды из выхлопной трубы Toyota Mirai, он сказал, что на вкус вода вполне себе даже ничего, дистиллированная, без примесей.

Значит второй плюс- экологичность. Никакого загрязнения окружающей среды вредными выбросами. Сведение к минимуму парниковых газов и спасение нашей прекрасной Планеты. Вот к чему может привести использование этого топлива.

Следующий фактор о водородных двигателях (его можно косвенно считать таковым). Исторически так сложилось, что водородом заправляли пионеров среди ДВС. Первый водородный двигатель был построен французским конструктором, Франсуа Исаак де Ривазом аж в 1806 году.

Не забудем и героические времена истории нашей страны. В блокадном Ленинграде на водород было переведено более 500 автомобилей. И они без особых проблем несли свою непростую службу.

Получается, что водород для сжигания в ДВС используют уже достаточно давно. Значит, и проблем в создании современного автомобиля не должно быть.

Четвертый фактор говорящий за целесообразность использования вещества с формулой H2- его колоссальная распространенность. H2 можно получать даже из отходов и сточных вод.

Часто встречающиеся вещества дешево стоят. Значит и водородное топливо не должно быть дорогим.

Пятый фактор. Водород может использоваться не только в ДВС. Технологии также позволяют его применять в так называемом топливном элементе.

Топливный элемент отделяет один электрон в атоме водорода от одного протона и использует электроны для получения электрического тока. Это электричество способно питать двигатель в электрокаре. В топливных элементах также не используется ископаемое топливо, они не загрязняют среду. И главное- они безопасны, водород не может самопроизвольно испарится из них, казалось бы, идеальный преемник двигателя внутреннего сгорания в качестве источника энергии для автомобилей 21-го века.

Использование водорода может происходить в различных силовых установках, делая его гибким к развитию технологий. Разрабатываемые современные водородные автомобили в основном используют данную схему, как наиболее безопасную и продуктивную.

Немало плюсов, неправда ли? И они очень весомые. Но почему тогда до сих пор мы не видим миллионы водородных самодвижущихся экипажей вокруг нас? На то есть свои причины, и они также очень важны.

Минус номер один. Да, водород самый распространенный элемент во всей Вселенной, однако на Земле в чистом виде газообразный водород найти практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он быстро поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.

В подавляющем количестве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют различные вещества. Например, H2O, более известная как вода или СН4, также известный как метан, оба содержат молекулы водорода.

Поэтому, прежде чем он может быть использован в качестве топлива, водород сначала должен быть извлечен из этих веществ, а затем переведен в особое состояние, как правило, в сжиженный вид.

На все эти действия требуются очень большие затраты энергии, а значит и средств. К примеру, для извлечения H2 из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто не рентабельно. По разным подсчетам стоимость литра сжиженного водорода составляет примерно от $2 до 8 Евро в зависимости от способа его добычи.

Следующим звеном в цепочке- идет отсутствие развитой сети водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, от классических АЗС, до частных минизаправок. При сегодняшнем развитии смежных технологий, все эти проекты чрезвычайно дороги и относительно опасны.

Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, когда стоимость их постройки будет целесообразна.

Существуют ли опасности, связанные с наличием большого количества чистого водорода в одном месте? Безусловно да. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он превращается в гремучую смесь (гремучий газ).

В плюсах мы отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО. ), однако обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется больше тепла, чем при сгорании бензина, это может привести к перегреву клапанов и поршней при работе двигателя под высокими нагрузками. Помимо этого под воздействием высоких температур, H2 может влиять на смазки и материалы из которых сделан двигатель, что приведет к повышенному износу рабочих частей мотора.

Отсюда неутешительный вывод, без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде топлива, использование водорода не приведет к ожидаемому результату.

А пока построенные объекты для заправки автомобилей водородом скорее используются в качестве рекламного хода и демонстрации возможностей будущего.

Топливные ячейки. Эти безопасные элементы также не избежали тернистого пути проб и ошибок. Как и с заправочными станциями и двигателями ДВС, все упирается в стоимость применяемых технологий.

Приведем пример, в качестве катализатора в топливных элементах используется платина. Представляете стоимость этой детали?!

Некоторые технологии настолько дороги, что проще жене купить платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.

Хорошая новость в этом дорогом деле заключается в том, что ученные непрерывно ищут замену драгоценному металлу. Разрабатываются новые технологии, тестирования проходят современные материалы. В итоге топливные элементы будущего могут снизить себестоимость в 1000 раз и более.

Возглавляет список проблем возгорания водорода. В присутствии окислителя – кислорода, водород может загореться, иногда возгорание происходит в виде взрыва. Согласно исследованиям, для воспламенения водорода, достаточно одной 10-й части энергии, требуемой для воспламенения бензина. Проще говоря, достаточно искры статического электричества для того, чтобы гремучий газ вспыхнул.

Еще одна проблема состоит в том, что пламя водорода почти невидимо. При возгорании водорода пламя настолько тускло, что с ним не так- то просто бороться.

Еще одно летальное свойство водорода- он может привести к удушью. H2 не ядовит, но если вы будете дышать чистым водородом можно задохнуться просто потому, что вы будете лишены кислорода. Хуже того, невозможно распознать, что концентрация водорода в воздухе высока, потому что он невидим и не имеет запаха- так же, как и кислород.

И наконец, как и любой сжиженный газ- водород имеет очень низкую температуру. При утечке из бака и непосредственным контактом с открытыми участками тела человека он приведет к серьезному обморожению.

Наверное, после прочитанного вы в шоке от того как опасен водород. И наверное никогда не захотите купить себе водородный автомобиль. Если в будущем появится такая возможность.

На самом деле не все так плохо. Поскольку газообразный водород чрезвычайно легок, при утечке он быстро рассеется в атмосфере. Тогда и гремучей смеси не получится, и опасность взрыва будет сведена к минимуму.

Что касается опасности удушья – такая проблема может быть только в замкнутом пространстве, например, в гараже. Если утечка водорода происходит на открытом воздухе, его концентрация будет небольшой и не опасной для жизни.

Популярные новости

© 2008-2015 Агентство «1ГАИ».

Права на изображения и материалы принадлежат их авторам

Источники: http://www.1gai.ru/publ/516203-vodorod-v-avtomobilyah-opasnosti-i-slozhnosti-ispolzovaniya.html


Back to top