1 ≫
-
Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и "вечные двигатели" в каждый дом!
Уже мало кто будет отрицать перспективу использовать водород, как топливо для автомобилей, хотя бы как топливо переходного периода. Ведь водород, во-первых является абсолютно экологически чистым топливом, а во-вторых его запасы практически неограничены, неисчерпаемы и возобновляемы. То есть водород можно добывать в любом месте, где есть мощные источники энергии. Многие из наших читателей безусловно будут нам возражать, говоря о том, что водород и водородное топливо, это совсем не то, к чему нужно стремиться. Отчасти согласимся с этим утверждением. Действительно, водород, это не совсем то топливо на котором хотелось бы видеть автомобили будущего. Но с другой стороны, при всем при этом, это очень большой шаг вперед и вполне достойная замена нынешнему бензину и тем более дизельному топливу. Но переход на водород задерживает прежде всего информационная подоплека. Ведь в учебниках и с экранов телевизоров, нам постоянно твердят, что водород, является взрывоопасным веществом, а главное для работы на водороде нужны специальные двигатели, которые нужно очень долго придумывать, испытывать и т.д. Мы не будем списывать все эти суждения на всемирные заговоры, так как большинство подобных рассуждений может быть связано с обычным невежеством, что в данном случае вполне простительно, так как найти достоверную информацию по этому поводу очень тяжело.
Поэтому нелишним будет повторить, что положительные опыты запуска обычных двигателей внутреннего сгорания без всяких переделок, были успешно проведены еще во время второй мировой войны, при защите Ленинграда.
Но одно дело, если это кто-то и где-то сделал, а другое дело это увидеть собственными глазами и иметь повторяемую и простую методику запуска обычных двигателей внутреннего сгорания на водороде без всякой переделки и доработки ДВС или, по крайней мере, с минимальными доработками двигателя. С удовольствием делимся с Вами положительным опытом запуска совершенно обычного двигателя внутреннего сгорания на таком же совершенно обычном промышленном водороде!
Ну вот видите!? Все можно проверить самостоятельно, без дорогущей лаборатории, миллионного финансирования и прочих «мешающих» факторов!
Ну а теперь давайте попробуем вместе ответить на следующие вопросы:
— Расход водорода по сравнению с бензином, как обстоят дела на практике?
— Негативные моменты использования водорода вместо топлива, есть ли такие?
— Оптимизация двигателя внутреннего сгорания для работы на водороде.
Мы будем очень рады услышать и тем более увидеть Ваши комментарии и видео. Но так как данная статья опубликована в разделе практика, то и комментарии и видео, мы ждем практически полезные, подтвержденные личным опытом, а не просто теоретические предположения.
Об авторе Вячеслав Васильев
Руководитель проекта «Заряд»
Запускаем обычный двигатель внутреннего сгорания на водороде — 12 комментариев
Ребят, Всем Здарова. Интересуюсь альтернативными источниками питания, хочу начать сборку магнитного генератора (для личного использования) ищу нужные знания в этой области (ПРАВДИВЫЕ И РАБОТАЮЩИЕ)В интернете неразбериха и НАШИ противники, прогресса и прорыва во всей истории человечества! Очень хочется верить что наши общие усилия не пройдут даром и Все ВМЕСТЕ Сможем вложить свой вклад в общее дело!
Если ты, действительно хочешь получить источник питания, то для начала задай вопрос: «А как это происходит в природе?» Там ведь нет катушек и прочих сложных конструкций, а грозы бывают везде и всегда.То есть, все должно быть гораздо проще, чем мы думаем. Мы наблюдаем, но к сожалению не видим этой простоты.
Для начала изучи пьезо эффект, это основа природного преобразования (превращения) энергии. Когда поймёшь это, перейдем к следующему вопросу, «Где взять «халявную» механическую энергию, которая бы работала 24 часа, без выходных и праздников, и при этом ничего не требовала.
Тема отличная , сам собирался занятся,в планах создать систему, солнечная батарея-гелиостат-электролиз воды-водород-получение электричества и тепла в холодные или несолнечные дни.Хранение солнечной энергии ввиде водорода это идеально.
А как его сжижать и закачивать в баллоны? мистер идеально
Хотел написать поподробней, да в конце страница сЪехала. В начале придумайте смазку работающую с водой. Где-то 1920-30 г.г. Рационализатор поплатился ссылкой за порчу тракторов экспериментами с добавлением паров воды в топливную смесь, хотя и получил известные преемущества
Увы опять же только слова… Нужны реальные исследования, а не страшилки, что где то кто то кому то голову за это открутил. :-)
В начале придумайте смазку работающую с водойВазелин)
В нормальных четырёхтактных двигателях "смазка" — машинное масло уже есть в двигателе, и всё что нужно, эта смазка успешно смазывает. Ваша реплика актуальна только для двухтактных ДВС , у которых машинное масло добавляется в топливную смесь.
Здравствуйте! Пытаюсь найти живых заинтересованных людей в общении (не пустом, а с экспериментами) на тему генератор газа Брауна. Не подскажете, кто этим занимается сейчас? Есть некоторые идеи. Особенно что касается в переоборудовании для авто. Вообще цель — самостоятельно или при помощи кого либо переоборудовать свое авто.
зажигания выставлять на раннее, нужны клапана (затворы тесла) на вход(до двигателя), (после двигателя) выход газа. они очень простые и эффективные (не будет хлопков). (в идеале, использовать в качестве двс турбину тесла) Температура горения (взрыва водорода) выше, поэтому для обычного ДВС необходимо к водороду добавлять часть выхлопного газа
есть описание работы с водой Шаубергер В кому интересно могу выслать от вас только скайп
Приветствую. Ищу технологию водородного двигателя.
Для реализации проекта указанного ниже в ссылке.
Технология представленная у компании H2 абсолютно сырая, ( общался не только с этой компанией) в разговоре выяснил что это так сказать только идея и они ищут инвестора не имея ничего конкретного кроме сайта. А мне нужна не фикция а реально работающее "тело"
Имею желание и возможность финансирования подобного проекта. :
Дельных, прошу обращаться для обсуждения на мой адрес^
Прошу не писать из праздного любопытства и не задавать не корректных вопросов есть ли деньги или вы в курсе что это очень дорого, или потяните ли вы его…
Для отправки комментария вам необходимо авторизоваться.
Поиск по сайту
Зайти на голосовую конференцию teamspeak3
Источники: http://zaryad.com/2015/03/02/zapuskaem-obychnyj-dvigatel-vnutrennego-sgoraniya-na-vodorode/
2 ≫
-
На сегодняшний день практически все мировые автопроизводители ведут активные разработки машин, работающих на экологически чистом виде топлива. Специалисты говорят, что уже через 15-20 лет мир полностью перейдет на такой вид транспорта. Пока лидерство в этом деле сохраняет компания «Тойота». После выпуска знаменитого «Примуса» японцы решили пойти дальше и разработать еще один экологически чистый автомобиль - Toyota Mirai с водородным двигателем. В сегодняшней статье мы рассмотрим все особенности данной новинки, а также перечислим все преимущества и недостатки использования водородных машин.
«Тойота Мирай» - это один из первых седанов японского производства, который компания решила выпускать в серийном масштабе. Кстати, решение назвать данную модель Mirai было вполне оправданным, ведь в переводе с японского это слово означает «Чистое будущее». Производитель утверждает, что первая серийная водородная Toyota отличится от своих аналогов большим запасом хода, который составит 480 километров. Этого вполне хватит как для повседневной эксплуатации в черте города, так и для семейных путешествий на большие расстояния. Но что касается дальних поездок, пока совершить их на таком авто не удастся. И здесь вопрос не в надежности конструкции (как всегда, японцы сделали машину качественно и «на века»), а в отсутствии нужных АЗС. Но об этом мы поговорим несколько позже.
Стоит отметить, что «Мирай» не самый первый в мире автомобиль с водородным двигателем. «Тойота» занимается разработкой гибридных моделей авто начиная с 1997 года. Именно тогда мировая публика увидела первый автомобиль с водородным двигателем в виде концепт-внедорожника модели FCHV. Однако запускать его в масштабное серийное производство японцы так и не решились. Чаще всего данный джип можно было встретить в госучреждениях и организациях, которые занимались тестированием данного вида транспорта. Кстати, водородный двигатель объединяет BMW и Toyota. Немцы заключили контракт с японскими инженерами и до 2020 года планируют создать новый экологически чистый седан BMW Hydrogen 7-й серии.
Для начала о преимуществах. Начнем с того, что двигатель на водородном топливе не выделяет никаких загрязняющих веществ, в отличие от дизеля и бензина. Стоит отметить и низкую себестоимость эксплуатации данного вида транспорта. Само топливо (водород) можно получать как в малых, так и крупных масштабах. Это позволит значительно стабилизировать ситуацию с постоянно меняющимися ценами на горючее и более рационально распределять энергетические ресурсы в мире.
Теперь поговорим о недостатках. Основной минус данного вида транспорта заключается в том, что водородный двигатель («Тойота FCV» в том числе) более взрывоопасен, чем классические дизельные и бензиновые аналоги. Это объясняется особым химическим составом водорода. Кстати, кроме взрывоопасности он отличается высокой летучестью. Эта характеристика значительно усложняет транспортировку и заправку автомобилей водородом. Также эксперты говорят, что обслуживание подобной установки будет более затратным, чем например ремонт дизельного ДВС (в силу малого количества работников, знающих толк в данной сфере). Ну и, конечно же, отсутствие водородных заправочных станций. В мире таких лишь единицы, потому использовать сейчас такие автомобили весьма трудно (тем более что заправить такую машину можно только при помощи специального оборудования).
Основная проблема водородных авто – отсутствие АЗС, на которых их можно было бы заправлять. Именно поэтому миру более актуальны электрокары, так как они заряжаются от обыкновенной розетки и даже на ходу, если на крыше есть солнечная батарея. Но производство водородных станций уже набирает темпы. Уже известно о планах строительства 20 таких АЗС в Калифорнии. Если продажи будут расти, количество заправок увеличат вдвое. Кстати, этот штат был выбран неспроста – именно в Калифорнии начнутся старты продаж водородных «Тойот». Но о продажах мы поговорим в конце статьи, а пока давайте рассмотрим экстерьер новинки.
Внешний облик новой «Тойоты Мирай» весьма впечатляющий. Сразу в глаза бросается массивный агрессивный «передок» с суровым широким бампером и раскосыми фарами. Решетка радиатора – это, пожалуй, самый мелкий и незначительный элемент в экстерьере. Но даже на таком маленьком кусочке пластика японцам удалось разместить свою фирменную эмблему, выполненную в хромированном стиле. Машина имеет хорошую площадь остекления. Особенно это касается лобового стекла. Водитель не будет чувствовать «мертвых зон», так как все события вокруг видны теперь как на ладони. Кузов имеет как угловатые, так и сглаженные, аэродинамические черты. Все это делает внешний облик седана очень свежим, современным и уникальным.
Внутренняя часть автомобиля словно часть космического корабля – масса кнопок, экранов, датчиков и всякой другой всячины. Что интересно, японцы не решились тратить деньги на разработку двух вариантов компоновки интерьера – для европейского и для внутреннего рынка. Проблему с перестановкой руля они решили очень просто, разместив все важные информационные приборы посредине торпеды. Сама панель размещена впритык к лобовому стеклу и растянута по всей его ширине. Дальше от нее размещен массивный бортовой компьютер, который оснащен встроенной функцией навигатора. Ниже него есть еще один дисплей. А разделяют их два широких воздуховода. Такие же дублируются по бокам у зеркал, только с хромированной окантовкой в углу. Рулевое колесо тоже оснащено кнопками дистанционного управления. Ручки КПП в салоне нет – вероятнее всего, используется вариатор или АКПП. Динамики размещены в дверях, также как и кнопки управления электростеклоподъемниками. Рулевое колесо имеет удобный хват. В целом, компоновка салона очень эргономичная. И даже невзирая на массу кнопок (тем более что половина из них сенсорные), он не перегружен лишними элементами и в некоторой степени кажется аскетичным.
«Тойота» выпустила машину с водородным двигателем, имеющим большой запас мощности. Силовая установка, по словам производителей, будет иметь 153 лошадиные силы, чего вполне достаточно как для автомобиля такого класса. О других двигателях японцы не говорят, и, скорее всего, на рынок выйдет только одна модификация новинки со 153-сильным экологически чистым агрегатом. Водородный двигатель («Тойота Мирай» 2015 года выпуска) работает на специальных топливных ячейках. Внутри последней происходит реакция, в которой принимают участие водород и кислород. В результате химического взаимодействия вырабатывается мощная энергия, которая питает электромотор.
Производитель говорит, что по динамическим характеристикам Toyota с водородным двигателем ничем не отличается от своих бензиновых аналогов. Разгон с нуля до «сотни» оценивается в 9 секунд. При этом инженеры отмечают низкую себестоимость поездок.Цена заправки бака за 1 километр составит всего 10 центов. Таким образом, чтобы проехать машине сотню километров, нужно потратить всего 10 долларов. А заправить авто можно всего за 5 минут.
Наверняка каждый из нас задумывался о принципе действия данного агрегата. Что же, давайте рассмотрим, как работает водородный двигатель на самом деле.
Основной движущей силой данных машин является электрохимический генератор (некий топливный элемент). У японцев он называется FC Stack. Внутри электрохимического генератора происходит реакция, в результате которой происходит окисление водорода. Именно в этот период вырабатывается нужная энергия, которая потом перенаправляется в компактный аккумулятор. Последний выполняет функцию питания электродвигателя, который и приводит машину в действие. В каком виде вырабатывает отходы водородный двигатель? «Тойота Мирай» не зря называется экологически чистой машиной, так как из ее выхлопной трубы исходят вовсе не ядовитые газы, а обыкновенная вода.
Все это очень хорошо, однако есть сила, препятствующая развитию данного вида транспорта. Основная проблема заключается в том, что процессы изготовления топлива для водородных авто на данный момент недостаточно развиты и требуют больших денежных затрат. Тем более что при создании водорода задействуются такие компоненты, как уголь и метан. Они очень сильно загрязняют атмосферу, а потому смысла в использовании таких двигателей ради «сохранения окружающей среды» нет. Конечно, отходов от сгорания данного топлива нет (чистая вода), но чтобы его приготовить, нужно значительно испортить атмосферу грязными выбросами. Поэтому все больше специалистов ищут замену теперешним ДВС в солнечных батареях.
Кстати, водород не относится к какому-либо уникальному виду топлива, который может использоваться только на одном типе двигателей. Исследования показали, что этот продукт вполне реально применять и на классических моторах с внутренним сгоранием. Однако после такой реакции есть последствия. Дело в том, что водород при сгорании в ДВС выделяет лишь 1/3 от той энергии, которую он произвел бы на специализированном агрегате. Правда, инженерам удалось исправить этот недостаток. Благодаря измененной системе зажигания КПД таких двигателей не снижается, а, напротив, увеличивается почти в 1,5 раза от обычного, что делает эксплуатацию этого топлива более благоприятной и разумной с экологической и финансовой точки зрения.
Но все же неприятности были подмечены не только в области КПД. И если коэффициент полезного действия инженерам удалось увеличить методом усовершенствования системы зажигания, то с такими проблемами, как высокая температура горения в камере, прогар поршней и клапанов, они справиться не в силах. Кстати, при длительной работе водород способен вступать в реакцию с другими составляющими мотора, в том числе и со смазкой. А без нее двигатель очень быстро изнашивается. Кроме этого, водород в силу своей летучести может проникать в выпускной коллектор и там воспламеняться. Что касается роторных ДВС, они в силу простой конструкции и большого расстояния между коллекторами являются более благоприятными для использования подобного топлива в качестве основного. На этом вопрос, как работает водородный двигатель, можно считать закрытым.
По словам производителя, старт продаж автомобилей «Тойота Мирай» состоится весной 2015 года. Сначала новинка будет доступна только на внутреннем рынке, а уже летом она появится на европейском и американском рынках. Стартовая цена водородной «Тойоты» составляет 57,5 тысячи долларов. Кроме этого, компания предлагает приобрести данное авто в кредит с ежемесячной оплатой в 500 долларов США. Бонусом станет возможность бесплатной заправки автомобиля в течение года на АЗС Калифорнии.
Пока у японской «Тойоты» нет конкурентов среди водородных автомобилей. По крайнее мерее, так будет до 2016 года. Дело в том, что в марте 2016-го на рынок выходит новый водородный автомобиль Honda FCV. Но насколько популярным она будет, мы прогнозировать не станем, а пока дождемся старта продаж новой «Тойоты Мирай».
Итак, мы выяснили, почему он такой особенный и как работает водородный двигатель. «Тойота» - один из первых автопроизводителей, который всерьез задумывается запустить в массовое производство свой «экологически чистый продукт». Правда, пока не будет решена проблема с заправочными станциями и более дешевым способом получения водорода, компанию вряд ли ждет большой успех в сфере продажи подобных машин.
Источники: http://fb.ru/article/165610/vodorodnyiy-dvigatel-toyota-toyota-mirai-s-vodorodnyim-dvigatelem
3 ≫
-
Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.
С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.
Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.
Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.
Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.
Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.
Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).
Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.
Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.
Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.
Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.
На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.
Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.
Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.
Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.
По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.
Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.
Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.
Правда, никаких отдельных установок для получения водорода из воды на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода на полном баке водорода составляет около 300 км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.
Двигатель на водородных топливных элементах
Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.
Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.
В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.
Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.
Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.
Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.
Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.
Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.
Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.
К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.
Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.
Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.
Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.
Новый виток эволюции ДВС: супер двигатель без коленвала. . GDI двигатель: что это такое? TDI двигатель: что это такое?
Принцип работы двигателя GDI представляет собой своеобразный «симбиоз» привычных бензиновых и дизельных ДВС. . Рекомендуем также прочитать статью о том, что такое двигатель TDI.
Рекомендуем также прочитать статью о том, что такое двигатель TDI. Из этой статьи вы узнаете об особенностях, а также преимуществах и недостатках силовых агрегатов данного типа. . GDI двигатель: что это такое?
Виды двигателей внутреннего сгорания, отличия различных типов ДВС. . Рекомендуем также прочитать статью о том, что такое двигатель GDI. . TDI двигатель: что это такое?
Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете о конструктивных особенностях, отличиях, преимуществах и недостатках указанного ДВС по сравнению с другими силовыми агрегатами.
Дизельные двигатели, обозначенные аббревиатурой TDI (от англ. Turbocharged Direct Injection) представляют собой установки с турбокомпрессором и оборудованы системой непосредственного впрыска топлива. Указанные ДВС можно встретить на.
Источники: http://krutimotor.ru/vodorodnyj-dvigatel-ustrojstvo/