Кислородный датчик (лямбда-зонд): устройство и принцип работы

1 ≫

Кислородный датчик — устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название — лямбда-зонд.

Коэффициент избытка воздуха λ

Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.

В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.

Зависимость мощности (P) и расхода топлива (Q) от коэффициента избытка воздуха

Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это «на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы».

В зависимости от значения λ различают три вида топливовоздушной смеси:

Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 («богатая» смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа каталитического нейтрализатора происходит при стехиометрическом составе топливовоздушной смеси.

Назначение датчиков кислорода

Стандартно в современных автомобилях используется два датчика кислорода (для рядного двигателя). Один перед катализатором (верхний лямбда-зонд), а второй после него (нижний лямбда-зонд). Различий в конструкции верхнего и нижнего датчиков нет, они могут быть одинаковыми, но выполняют разные функции.

Верхний или передний кислородный датчик определяет содержание оставшегося кислорода в отработавших газах. По сигналу с данного датчика блок управления двигателем «понимает», на каком типе топливовоздушной смеси работает двигатель (стехиометрической, богатой или бедной). В зависимости от показаний кислородника и требуемого режима работы, ЭБУ корректирует количество топлива, подаваемого в цилиндры. Как правило, топливоподача корректируется в сторону стехиометрической смеси. Следует отметить, что при прогреве двигателя сигналы с датчика игнорируются ЭБУ двигателя до достижения им рабочей температуры. Нижний или задний лямбда-зонд используется для дополнительной корректировки состава смеси и контроля исправности работы каталитического нейтрализатора.

Конструкция и принцип работы кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них — датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Конструкция кислородного датчика

Наружный электрод — осуществляет контакт с выхлопными газами

  • Внутренний электрод — контактирует с атмосферой
  • Нагревательный элемент — используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C)
  • Твердый электролит — расположен между двумя электродами (диоксид циркония)
  • Корпус
  • Защитный кожух наконечника — имеет специальные отверстия (перфорацию) для проникновения отработавших газов
  • Устройство наконечника лямбда-зонда

    Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ — бедная смесь, от 450 до 900 мВ — богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

    Виды лямбда-зондов

    Помимо циркониевых используются также титановые и широкополосные датчики кислорода.

    • Титановые. Этот вид кислородников имеет чувствительный элемент из диоксида титана. Рабочая температура такого датчика начинается от 700 °C. Титановые лямбда-зонды не требуют наличия атмосферного воздуха, поскольку принцип их работы основан на изменении выходного напряжения, в зависимости от концентрации кислорода в выхлопе.
    • Широкополосный лямбда-зонд представляет собой усовершенствованную модель. Он состоит из цикрониевого датчика и закачивающего элемента. Первый измеряет концентрацию кислорода в отработавших газах, фиксируя напряжение, вызванное разницей потенциалов. Далее происходит сравнение показания с эталонной величиной (450 мВ), и, в случае отклонения, подается ток, провоцирующий закачивание ионов кислорода из выхлопа. Это происходит до тех пор, пока напряжение не станет равным заданному.

    Ресурс кислородника и его неисправности

    Лямбда-зонд — один из наиболее быстро изнашиваемых датчиков. Это связано с тем, что он постоянно контактирует с отработавшими газами и его ресурс напрямую зависит от качества топлива и исправности двигателя. Например, циркониевый кислородник имеет ресурс порядка 70-130 тысяч километров пробега.

    Поскольку работа обоих кислородных датчиков (верхнего и нижнего) контролируется системой бортовой диагностики OBD-II, при выходе из строя любого из них будет зафиксирована соответствующая ошибка, а на панели приборов загорится контрольная лампа неисправности «Check Engine». Диагностировать неисправность в данном случае можно с помощью специального диагностического сканера.

    Сигнал исправного кислородного датчика

    При исправной работе кислородного датчика характеристика сигнала представляет собой правильную синусоиду, демонстрирующую частоту переключений не менее 8 раз в течение 10 секунд. Если датчик вышел из строя, то форма сигнала будет отличаться от эталонной, либо его отклик на изменение состава смеси существенно замедлится.

    Основные неисправности кислородного датчика:

    • износ в процессе эксплуатации («старение» датчика)
    • обрыв электрической цепи нагревательного элемента
    • загрязнение

    Все эти виды проблем могут быть спровоцированы использованием некачественного топлива, перегревом, добавлением различных присадок, попаданием в зону работы датчика масел и чистящих средств.

    Признаки неисправности кислородника:

    • Индикация сигнальной лампы неисправности на приборной панели
    • Потеря мощности
    • Слабый отклик на педаль газа
    • Неровная работа двигателя на холостых оборотах

    Неисправность датчика может привести к сложностям в управлении автомобилем и стать причиной повышенного износа остальных деталей двигателя. А поскольку он не подлежит ремонту, его необходимо сразу заменить на новый.

    Источники: http://techautoport.ru/dvigatel/vypusknaya-sistema/kislorodnyi-datchik.html

    2 ≫

    Для полного сгорания топливо-воздушной смеси в камере сгорания двигателя, необходимо точное соотношение топлива, впрыскиваемого форсункой, и порции воздуха, поступившего в цилиндр. При таком точно дозированном составе, происходит наиболее полное сгорание топлива и выделяется наименьшее количество вредных выхлопов. Такое соотношение называется стехиометрическим. Для определения доли кислорода в отработавших газах используется кислородный датчик или лямбда-зонд.

    Электронный блок управления работой двигателя (ЭБУД) дозирует количество топлива, впрыскиваемого топливными форсунками в камеру сгорания двигателя. Датчик кислорода (или лямбда-зонд) является своеобразной обратной связью, с помощью которой электронная система управления дозирует впрыскиваемое топливо, доводя горючую смесь до стехиометрически правильной, т.е. оптимально подготовленной для воспламенения и полного сгорания в цилиндрах двигателя. Правильное дозирование топлива важно не только с экономической но и с экологической точки зрения.

    В современных автомобилях устанавливаются и повсеместно используются каталитические нейтрализаторы. В них происходит молекулярное изменение выхлопных газов, которое снижает их вредность.

    Кислородные датчики устанавливаются до и после катализатора. Общее их число достигает четырех, в случае V-образного двигателя, в котором есть два выпускных коллектора и соответственно два катализатора.

    Обязательное наличие каталитических нейтрализаторов и лямбда-зондов обусловлено высокими экологическими требованиями к автомобильным выхлопам.

    Датчики кислорода состоят из внешнего и внутреннего электрода. Внешний электрод имеет платиновое напыление и чувствителен к молекулам кислорода, а внутренний электрод изготовлен из циркониевого сплава. При прохождении кислорода, изменяется потенциал между выводами электродов, чем больше кислорода, тем выше потенциал.

    Особенность циркониевого сплава в том, что его рабочая температура находится в пределах 300-1000 градусов. Поэтому, современные лямбда-зонды оснащены электрическими подогревателями. Подогреватель выполнен в виде спирали, который доводит температуру кислородного датчика до рабочей при холодном запуске.

    Можно выделить несколько признаков неисправной работы датчика кислорода:

    • Некоторое увеличение расхода топлива;
    • Повышение токсичности выхлопа автомобиля;
    • Появление на панели управления аварийного знака «check engine» во многих случаях говорит именно о неисправности или не корректной работе лямбда-зонда.

    Основными причинами неисправности кислородных датчиков являются:

    1. Механическая неисправность

    Неисправность проводки лямбда-зонда или обмотки обогрева;

    Разрушения корпуса датчика.

    Эти неисправности решаются заменой датчика.

    2. Ненадлежащее качество топлива

    При некачественном горючем, на поверхности внешнего электрода датчика кислорода откладывается свинец в виде блестящих вкраплений. Этот слой снижает чувствительность внешнего электрода к кислороду и снижает эффективность его работы в целом.

    3. Неисправность в топливной системе двигателя

    Со временем , из за отложения кокса в соплах топливных форсунок, запорная игла форсунки начинает не полностью перекрывать канал и в камеру сгорания цилиндров двигателя подается избыточное количество топлива. По той же причине, вместо образования облака топливной смеси, форсунка попросту льет топливо, что в результате приводит к эффекту не полного сгорания. В камеру сгорания впрыскивается «богатая» топливная смесь, которая не успевает сгореть во время такта воспламенения. По этой причине выделяется избыточное количество угарного газа. Он оседает на поверхности внешнего электрода лямбда-зонда в виде сажи. Аналогично с предыдущим пунктом, сажа является причиной некорректной работы кислородного датчика.

    Для проверки системы катализации используется специальное диагностическое оборудование. С помощью него определяют работоспособность системы. На заведенном двигателе измеряются значения сопротивления между выводами, характеристики подогрева зондов и их изменения на разных оборотах двигателя. Полученные данные сравниваются со спецификацией. Таким образом, диагностический сканер анализирует динамические характеристики работы лямбда-зондов и эффективность работы катализатора.

    Источники: http://www.autopride.ru/journal/datchik-kisloroda-ustrojstvo-i-princip-raboty-lyambda-zonda/

    3 ≫

    Для того, чтобы добиться наибольшей продуктивности от работы двигателя необходимо обеспечить наилучшее сгорание топливно-воздушной смеси, в свою очередь для этого необходимо точно определить необходимые пропорции впрыскиваемого топлива и поступающего воздуха. Полученная смесь гарантирует наилучшее сгорание, продуктивную работу и наименьшее количество вредных веществ от выхлопа. Для определения доли кислорода в отработанных газах автомобиля, используется кислородный датчик (он же лямбда зонд, в народе).

    Такой датчик используется только на инжекторных автомобилях. Лямбда зонд устанавливается в выхлопной системе автомобиля, некоторые модели авто могут содержать в комплектации 2 кислородных датчика, в таком случае один из них устанавливается до катализатора, второй – после катализатора. Применение 2 датчиков, позволяет усилить контроль, за отработанными газами автомобиля, тем самым достигнуть наиболее эффективной работы катализатора.

    Как работает лямбда зонд?

    Как Вам известно, дозировкой подаваемого топлива занимается электронный блок управления, он подает сигнал на форсунки о количестве необходимого топлива в камере сгорания в тот или иной момент времени. Лямбда зонд, в этом процессе выступает в качестве устройства обратной связи, благодаря которому, происходит правильная дозировка топлива на количество подаваемого воздуха. Правильно рассчитанная смесь очень важна как с экологической точки зрения, так и с экономической. На сегодняшний день, одним из важнейших требований к производству автомобилей является экологическая безопасность, поэтому новые автомобили комплектуются как правило каталитическим нейтрализатором (катализатором) и двумя датчиками лямбда зонда. Такое сочетание устройств позволяет свести к минимуму экологический вред, который наносят автомобили окружающей среде, но при возникновении поломки в одном из функциональных узлов выпускной системы, водитель попадет на приличные деньги, ведь все это не так то и дешево стоит.

    Устройство лямбда зонда.

    Сам датчик состоит из 2 электродов, внешнего и внутреннего. Внешний электрод сделан из платинового напыления, поэтому особо чувствителен к кислороду, из за химический свойств платины, ну а внутренний сделан из циркония. Лямбда зонд устанавливается таким способом, чтобы через него проходили отработанные газы автомобиля, при прохождении, внешний электрод улавливает кислород в отработанных газах, при этом изменяется потенциал между электродами, чем больше кислорода – тем выше потенциал! Особенностью циркониевого сплава, из которого сделан внутренний электрод – это его рабочая температура, которая достигает отметки в 300-1000 градусов. Именно по этой причине кислородные датчики имеют в своей конструкции подогреватели, которые доводят температуру самого датчики до рабочей в момент холодного запуска двигателя.

    Лямбда зонды бывают 2 видов:

    Эти два вида датчика между собой схожи по внешним признакам, но при этом выполняют работу различными способами.

    Двухточечный датчик – это пример того датчика, который мы описывали ранее, состоит он с двух электродов, он фиксирует коэффициент избытка воздуха в топливной смеси, по величине концентрации кислорода в отработанных газах автомобиля.

    Широкополосный датчик – является современной конструкцией лямбда зонда, в нем значение получают благодаря использование силы тока закачивания. По своей конструкции широкополосный датчик состоит из двух керамических элементов, двухточечного и закачивающего. Закачивающий элемент – физическим процессом закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока. Датчик держит постоянное напряжение 450 мВ, если концентрация кислорода уменьшается – напряжение между электродами возрастает и подается сигнал в электронно управляющий блок. Как только сигнал поступил на ЭБУ, создается ток определенной силы на закачивающем элементе, этот ток обеспечивает закачку кислорода в измерительный зазор. В этом всем процессе, величины силы тока, которая подается на закачивающий элемент – это уровень концентрации кислорода в отработанных газах.

    Основные причины и признаки неисправностей. Существует несколько признаков, по которым можно определить неисправность кислородного датчика:

    • Увеличение токсичности выхлопных газов. Этот показатель на «глаз» определить невозможно, только с помощью замера специальным прибором, можно сделать вывод что уровень СО выхлопных газов увеличен. Показания прибора о увеличении СО гласит о нерабочем датчике лямбда зонд.
    • Увеличение расхода топлива. Этот признак более заметен, чем предыдущий. Любой автомобилист интересуется, какой количество топлива расходуется автомобилем на определенное расстояние, поэтому повышение расхода будет заметно практически сразу. Единственный нюанс в этом способе определения – не всегда увеличение расхода топлива говорит о неисправности кислородного датчика.
    • Check Engine. Все инжекторные автомобили имеют блок управления, который можно диагностировать на причину поломки в том или ином узле. Как правило, при появлении неисправности на приборной панели загорается соответствующая лампочка «Check Engine». В большинстве случаев, горение этой лампы говорит о неисправности лямбда зонда, более подробно можно узнать при диагностике на сервисе.

    • Качество топлива. При некачественном топливе, на кислородном датчике откладывается небольшими долями свинец, этот слой со временем снижает чувствительность внешнего электрода к кислороду. Такой датчик можно со временем смело считать нерабочим.
    • Механическая неисправность. К этим неисправностям относятся чисто механические повреждения самого датчика. Например: повреждение корпуса датчика, нарушение целостности обмотки обогрева и прочее. Решаются такие причины путем замены датчика на новый, ремонт практически невозможен и не целесообразен.
    • Неисправность в топливной системе автомобиля. Из за неисправности форсунок, в цилиндры двигателя подается большее количество топлива, чем требуется, следовательно, оно не сгорает, а выходит в выхлопную систему в виде черного налета (сажи). Со временем эта сажа накапливается на всех узлах выхлопной системы автомобиля, в том числе и на лямбда зонде, это становиться причиной неправильной работы датчика. Как лечение, можно использовать тряпки и средства очистки, чтобы вычистить кислородный датчик, но если такие загрязнения будут постоянными – можно смело выбрасывать датчик и устанавливать новый.

    Следите за автомобилем и своевременно выполняйте диагностику, это поможет сохранить функциональные узлы в хорошем состоянии на протяжении длительного времени.

    Комментарии

    Еще статьи.

    Почему двигатель не набирает, или плохо набирает обороты, не тянет.

    Если ваш двигатель не набирает, или плохо набирает обороты, не тянет, чихает и пукает, согласитесь это очень не приятно. Здесь же давайте попробуем разобраться в причинах такого не здорового поведения двигателя, которых уверяю вас великое множество, от какого нибудь проводка или патрубка, до весьма доставляющих.

    Оппозитный двигатель.Преимущества и недостатки.

    Оппозитный двигатель - вид двигателей, до которого нельзя было не додуматься в процессе развития автомобилестроения. Все началось с желания сэкономить побольше пространства под капотом автомобиля. Но, обо всем по порядку. Для начала думаю стоит упомянуть, что типов оппозитных двигателей несколько - двигатели типа боксер.

    Авиационный поршневой двигатель. Устройство и принцип работы.

    Если посмотреть на исторические данные, касающиеся участия поршневых двигателей в авиации, то можно легко обнаружить тот факт, что их массовое применение началось еще задолго до самой авиации. В те года поршневые двигатели стали первопроходцами не только в авиации. Благодаря им поехал первый автомобиль и поднялся.

    Сапунит двигатель. Причины по которым сапунит двигатель а также методы их устранения.

    В этой статье поговорим о том, почему сапунит двигатель, чем это чревато в будущем и какие болячки могут вылезти при диагностике двигателя с таким расстройством. Начнем с того, что любой, даже нормальный исправный движок будет сапунить, ибо поршневым кольцам не удержать весь воздух, сжимаемый в.

    Роторный двигатель.

    Роторный двигатель Феликса Ванкеля - уникальная разновидность двигателей, создан и более менее доведенный до ума в середине двадцатого века. В чем же уникальность роторно-поршневого двигателя Ванкеля? Ответ прост, при малых габаритах и рабочем объёме, в комплекте с простотой конструкции и значительно меньшем количестве деталей по.

    Перегрев двигателя. Причины и последствия перегрева.

    Перегрев двигателя - очень глубокая тема и пожалуй самая распространенная причина выхода из строя двигателей, которая может вести за собой куда более серьезные последствия. Далее будут описаны причины и последствия перегрева. Возможных причин перегрева великое множество и количество их ограничивается лишь фантазией и воображением человека.

    Нет давления масла в двигателе. Датчик давления масла двигателя.

    Итак, нет давления масла в двигателе, на приборке горит красная лампочка и очень печалит владельца авто. Скажу сразу, ехать с такой проблемой нельзя, рискуете получить нехилый высер через пару км, а может и раньше. Чем же чревата езда без давления масла? Приятного в общем то.

    Инжектор. Принцип работы инжекторной системы подачи топлива.

    Что такое инжектор — это система точечной подачи топлива во впускной тракт или в цилиндр с помощью распылителя (форсунки), получающей электронный сигнал от блока управления.Инжекторная система подачи топлива пришла на смену карбюратору, но, продолжительное время не применялась из-за сложности конструкции. Первая инжекторная система появилась в.

    Двигатель пошел в разнос. Причины и последствия разноса.

    Для начала разъясним что значит термин "двигатель пошел в разнос" - самопроизвольное увеличение оборотов двигателя до ахуестических значений, ни кем и ни чем не контролируемое, своеобразный суицид. В большинстве случаев, прежде чем водитель поймет что двигатель идет в разнос, тот успеет либо заклинить, либо.

    Статьи

    Двигатель белаза Cummins QSK-78

    Танковый двигатель 5ТДФ

    Вода попадает в масло

    Lexus ES300 расход масла

    Оторвало гильзу на камазе

    Ломается коленвал ЯМЗ-238

    Заводим дизель в зимние морозы

    Последние комментарии

    Попадает солярка в моторное масло дизельного двигателя

    Двигатель троит. Причины по которым троит двигатель.

    Двигатель троит. Причины по которым троит двигатель.

    Двигатель троит. Причины по которым троит двигатель.

    Двигатель с ГБО преимущества и недостатки. ГБО 4 поколения.

    Основные разделы:

    Последние материалы:

    • 1
    • 2
    Предыдущая Следующая

    08 сентября 2016 Просмотры:0 Двигатели и виды двигателей

    ММЗ Д-260 массово поперли в ремонт.

    08 сентября 2016 Просмотры:1 Двигатели и виды двигателей

    Клеймо YAMOTORIST.RU на первом поршне.

    В общем, вот уже 4 года мечу таким образом двигателя, которые сам собираю. Но, не.

    04 октября 2015 Просмотры:11899 Узлы, системы и агрегаты двигателя.

    Датчик Холла, виды, устройство и принцип работы.

    Датчик Холла - это датчик магнитного поля, на двигателе он фиксирует магнитные импульсы от сопряженного.

    30 сентября 2015 Просмотры:17877 Узлы, системы и агрегаты двигателя.

    Система рециркуляции отработавших газов (EGR). Клапан EGR.

    Что такое система EGR. Название EGR – это аббревиатура от английских слов Exhaust Gas Recirculation, что.

    Копирование и перепечатка возможны при условии наличия активной гиперссылки на страницу источник, либо при согласовании с администратором.

    Источники: http://yamotorist.ru/index.php/kontent/lyambda-zond-datchik-kisloroda-ustrojstvo-i-printsip-raboty


    Back to top