Процесс сгорания топлива в дизелях

1 ≫

Под сгоранием понимают быстро протекающую химическую реакцию окисления топлива, сопровождающуюся выделением тепла и появлением пламени. При сгорании химическая энергия топлива превращается в тепловую энергию продуктов сгорания, которая используется в двигателях. Воспламенение рабочей смеси в цилиндре дизеля в отличие от карбюраторного двигателя происходит без участия внешнего источника пламени (искры).

В цилиндре дизеля при такте всасывания поступает воздух, который при следующем перемещении поршня (такт сжатия) сжимается до давления 25-60 кГ/см2. Температура воздуха в цилиндре при таком давлении поднимается до 650-750°С. В нагретый и сжатый воздух в конце такта сжатия насосами высокого давления с силой впрыскивается через форсунку топливо и в распыленном состоянии перемешивается с воздухом, образуярабочую смесь, которая без постороннего источника воспламеняется и сгорает. Достижение таких высоких параметров воздуха в дизелях тепловозов обеспечивается за счет высокой степени сжатия.

В табл. 6 приведены данные о степени сжатия и максимальном давлении сгорания топлива по дизелям основных серий тепловозов.

ление сгорания в

ное давление на

поршень в кГ1см*.

Мощность в э. л. с.

Для нормального сгорания топлива необходимо, чтобы оно успевало полностью испариться в цилиндре. Соотношение топлива и воздуха в объеме цилиндра должно быть равномерным. Эти условия достигаются как за счет конструкционных особенностей топливной аппаратуры и камеры сгорания двигателя, так и за счет свойств дизельного топлива (вязкости, фракционного состава, плотности и др.).

Для полного испарения н сгорания топлива в цилиндрах необходимо тонкое его распыливание. Если в цилиндре дизеля какая-то часть топлива к моменту воспламенения будет находиться в каплевидном состоянии, то процесс сгорания будет частично задерживаться н топливо будет догорать в конце такта расширения или даже при выпуске. За счет этого будет перегреваться дизель и падать его мощность. Для полного сгорания топлива необходимо, чтобы было подано в дизель достаточное количество воздуха, а процесс перемешивания топлива с воздухом происходил бы равномерно. Если в дизель будет подано недостаточное количество воздуха, то это приведет к неполному сгоранию рабочей смеси, т. е. в продук тах сгорания останутся горючие вещества - окись углерода или чистый углерод в виде сажи. Поэтому для полного сгорания топлива в цилиндры двигателя подается воздух с некоторым избытком.

Теоретически установлено, что для сгорапия 1 кг дизельного топлива требуется 14,5 кг воздуха. Практически же для полного сгорания в цилиндры дизеля подается воздуха больше, чем теоретически необходимо. Это вызывается тем, что на испарение топлива от момента его впрыскивания до начала горения в современном высокооборотном дизеле отводится мало времени (0,003 - 0,004 сек). За такое короткое время топливо не успевает полностью и равномерно перемешиваться с воздухом, если его не будет подано с избытком, а следовательно, и сгорание топлива будет неполным-дизель будет дымить. Отношение фактического расхода воздуха, вводимого в цилиндры дизеля на 1 кг топлива, к теоретически необходимому количеству воздуха называется коэффициентом избытка воздуха и обозначается греческой буквой а (альфа). Так, например, при номинальной мощности дизеля 2Д100 на 1 кг сжигаемого дизельного топлива расходуется около 26 кг воздуха. В этом случае коэффициент избытка воздуха составляет:

Следовательно, если два дизеля 2Д100 тепловоза ТЭЗ в 1 ч сжигают при максимальной форсировке 700 кг дизельного топлива, то для полного сгорания такого количества топлива при коэффициенте избытка воздуха 1,8 необходимо в цилиндры дизеля подать (26X700) = = 18 200 кг, или 14 500 м3 воздуха (1 кг воздуха при нормальных условиях занимает объем примерно 0,8 м3). Если коэффициент избытка воздуха будет чрезмерно большим, то это также нежелательно, так как часть полезной энергии топлива затрачивается на нагревание избыточного воздуха, отчего понижается температура горения, а следовательно, снижается мощность дизеля. Для экономичной и надежной работы дизеля тепловоза выбор коэффициента избытка воздуха имеет очень важное значение.

Процесс сгорания топлива в дизелях с воспламенением от сжатия обычно принято разделять на три фазы.

Первая фаза - период задержки воспламенения, или период предварительного окисления, который зависит от химического и фракционного состава топлива, от температуры и давления рабочей смеси в камере сгорания. Наименьшим периодом задержки воспламенения обладают парафиновые углеводороды, затем идут нафтеновые и наибольшим периодом - ароматические.

Повышение температуры воздуха к моменту впрыска топлива увеличивает нагрев его, в результате чего возрастает скорость испарения, улучшается самовоспламеняемость топлива, сокращается первый период. При повышении давления температура самовоспламенения снижается. Кроме того, при тонком распиливании повышается поверхностное испарение, происходит наиболее равномерное распределение топлива по объему цилиндра, что также вызывает сокращение первого периода.

Вторая фаза - период быстрого сгорания топлива и резкого нарастания давления, зависящий от количества топлива, впрыснутого в цилиндр, а также от скорости распространения пламени. Если при этом периоде интенсивность приращения давления не превышает 4-6 кГ/см2 за время поворота коленчатого вала на 1°, то принято считать, что двигатель будет работать нормально. Большие величины приращения давления в цилиндрах вызывают жесткую работу дизеля (стуки), при этом повышается давление на подшипники.

Третья фаза - период замедленного регулируемого горения, зависящий от скорости подаваемого во времени топлива и от протекания первых двух фаз.

Общей основной характеристикой для всех видов топлива является теплота его сгорания. Теплотой сгорания топлива называется количество тепла в кал (калориях), которое выделяется при полном сгорании единицы массы или объема топлива. Различают высшую и низшую теплоту сгорания топлива.

Высшей теплотой сгорания называют количество тепла, которое выделяется при полном сгорании весовой (1 кг) или объемной (1 л) единицы топлива и при конденсации воды, образовавшейся за счет сгорания водорода, входящего в состав углеводородов топлива.

Низшей теплотой сгорания называется количество тепла, которое выделяется при полном сгорании 1 кг или 1 л топлива без учета тепла, выделяющегосяпри конденсации воды. Разница между высшей и низшей теплотой сгорания для дизельного топлива составляет от 5 до 10%.

Для оценки теплотехнических свойств топлива и технических расчетов пользуются низшей теплотой сгорания. Теплота сгорания топлива, выраженная в килокалориях на 1 кг топлива (ккал/кг), называется весовой теплотой сгорания, а выраженная в килокалориях на 1 л топлива (ккал1л)-объемной теплотой сгорания. Объемная теплота сгорания численно равна весовой теплоте сгорания, умноженной на удельный вес топлива.

Для сравнения укажем, что при сгорании 1 кг дизельного топлива выделяется в среднем около 10 200 ккал тепла, при сгорании 1 кг высококачественного угля (антрацита) выделяется 8 000 ккал, а при сгорании 1 кг сухих березовых дров - 4 700 ккал.

Оценку качества сгорания дизельного топлива производят цетановым числом.

Материалы: http://www.dieselloc.ru/books/oil/oil8.html

2 ≫

Для обеспечения сгорания в двигателе внутреннего сгорания небольшое количество топлива смешивается с поступающим воздухом. К сожалению, двигатель внутреннего сгорания не может сжигать без остатка все топливо, которое он использует. Вследствие этого двигатель выпускает побочные продукты сгорания в виде отработавших газов. Некоторые из этих побочных продуктов вредны и загрязняют воздух. Борясь с этой проблемой, изготовители автомобилей разработали так называемые устройства понижения токсичности выхлопа, которые ограничивают выброс этих вредных веществ или полностью устраняют его.

В процессе сгорания происходят несколько химических реакций. Одни соединения разрушаются, а новые соединения образуются. Управление процессом сгорания - это ключ к управлению всей работой и токсичностью выхлопа двигателя внутреннего сгорания.

3. Искра зажигания

Бензин состоит из углеводородов, которые образуются в результате переработки сырой нефти. Углеводороды состоят из атомов водорода (Н) и углерода (С). В бензин добавляются различные химикаты, типа ингибиторов коррозии, красителей и очищающих средств. Эти химикаты называются присадками.

Тепло и давление, присутствующие в двигателе внутреннего сгорания, могут заставить бензин, находящийся в камере сгорания, воспламениться раньше, чем генерируется искра зажигания. Это называется преждевременным воспламенением и более подробно описывается дальше. Октановое число бензина указывает на то, насколько хорошо он противостоит преждевременному воспламенению. Дополнительная очистка может способствовать увеличению октанового числа.

В настоящее время в регионах с чрезвычайно высоким уровнем загрязнения воздуха используется тип топлива, называемый улучшенным бензином (подвергнутым реформингу) (RFG). Такой бензин имеет специальные присадки, называемые окислителями, которые улучшают сгорание, увеличивают октановое число и уменьшают токсичность выхлопа.

После разделения атомов водорода и углерода они соединяются с атомами кислорода, содержащимися в воздухе. Атомы водорода объединяются с кислородом, образуя воду. Атомы углерода объединяются с кислородом, образуя двуокись углерода (углекислый газ).

Соотношение "воздух/топливо" 14.7:1 обеспечивает наилучшее управление всеми тремя компонентами (углеводороды, одноокись углерода и оксиды азота) при выпуске почти во всех условиях. Соотношение "воздух/топливо" также увеличивает эффективность каталитического нейтрализатора, который является частью системы выпуска автомобиля.

Детонация - это неустойчивый процесс горения, который может вызывать неисправность прокладки головки цилиндров, а также и другие повреждения двигателя. Детонация возникает, когда в камере сгорания наблюдается перегрев и повышенное давление. Когда это происходит, создается взрывная сила, которая инициирует резкий рост давления в цилиндрах, сопровождаемый сильным металлическим стуком. Ударные волны, похожие на удары молотка, генерируемые при детонации, подвергают прокладку головки цилиндров, поршень, кольца, свечу зажигания и подшипники шатуна серьезным перегрузкам.

Преждевременное воспламенение - это другое аномальное состояние горения, которое иногда путают с детонацией. Преждевременное воспламенение имеет место, когда какая-либо точка в камере сгорания становится настолько горячей, что становится источником зажигания и заставляет топливо воспламеняться до генерирования искры зажигания. Оно может сделать свой вклад в детонацию или даже стать ее причиной.

Вместо воспламенения топлива в правильный момент времени, чтобы дать коленчатому валу плавный толчок в требуемом направлении, топливо загорается преждевременно. Это вызывает мгновенный обратный удар в тот момент, когда поршень пытается повернуть коленчатый вал в неправильном направлении. Этот удар вследствие напряжений, которые он создает, может быть очень разрушительным. Кроме того, преждевременное воспламенение может локализовать тепло до такой степени, что оно может частично проплавить или прожечь отверстие в головке поршня.

При богатой воздушно-топливной смеси все топливо не сгорает. Поэтому увеличивается уровень выделений углеводородов и одноокиси углерода. Бедная воздушно-топливная смесь может при сгорании генерировать повышенное количество тепла. Поэтому увеличивается содержание оксидов азота. Чрезмерно обедненная воздушно-топливная смесь в результате приводит к пропускам воспламенения. Это увеличивает выделения углеводородов.

Каталитические нейтрализаторы, которые химически нейтрализуют токсичные отработавшие газы, наиболее эффективны в очень узком диапазоне, близком к стехиометрическому соотношению.

1. Углеводороды (НС)

2. Одноокись углерода (СО)

3. Оксиды азота (N0 X )

• Чрезмерно богатая воздушно-топливная смесь

• Загрязнение воздушного фильтра

• Выход из строя клапана PCV

• Загрязнение топлива маслом

• Заедание или протечки в топливной форсунке

На исправном автомобиле с каталитическим нейтрализатором выделение одноокиси углерода обычно приближается к нулю. Содержание одноокиси углерода измеряется в процентах от полного объема в воздухе.

Пока нет комментариев

  • 07.11.2017

© 2009 - 2017, MskJapan.ru — Оригинальные японские запчасти, кузовные запчасти для японских автомобилей, тормозные колодки, тормозные колодки lucas, тормозные диски, щетки стеклоочистителя Valeo, Бош, фильтра, оптика depo, фары, фонари, бампера, неоригинальные запчасти, крылья - для японских автомобилей Toyota, Mazda, Nissan, Mitsubishi, Honda, Suzuki, Infiniti, а так же автозапчасти для корейских автомобилей Kia и Hyundai и европейских автомобилей Audi, Skoda, Volkswagen, Ford всегда в наличие и на заказ.

Все опубликованные на сайте сведения и расценки не являются публичной офертой и носят только ознакомительный характер.

Японские запчасти для автомобилей Mazda, Toyota, Honda, Mitsubishi, Infiniti, Suzuki и Nissan в наличии и под заказ.

С 2009 года компания MskJapan предлагает автомобилистам Москвы и других регионов России запчасти для японских автомобилей. В нашем ассортименте вы найдете запчасти Ниссан, Инфинити, Мицубиси, Тойота, Хонда, Сузуки и Мазда. Мы готовы предоставить Вам запчасти для этих японских автомобилей, как с нашего склада, так и под заказ в минимальные сроки.

Компания MskJapan всегда открыта для сотрудничества с частными лицами и крупными компаниями

Наши партнеры: Информационный портал Подмосковья Форум Подмосковья

Материалы: http://www.mskjapan.ru/articles/process_sgorania_topliva

3 ≫

При сгорании топлива в двигателе происходит превращение его химической энергии в тепловую и далее в механическую. От характера протекания процесса сгорания зависят не только мощностные и экономические показатели двигателя, но и его надежность и долговечность.

Различают два вида сгорания в двигателе: нормальное и аномальное. При нормальном сгорании после воспламенения топливной смеси искрой свечи зажигания обеспечивается устойчивое распространение пламени в цилиндре двигателя со скоростью 20…60 м/с. При увеличении числа оборотов двигателя скорость сгорания топливной смеси также повышается вследствие усиления турбулизации заряда, благодаря чему топливо успевает сгореть. Максимальное значение скорости сгорания соответствует составу топливно-воздушной смеси с коэффициентом избытка воздуха а =0,9…0,95, при котором и обеспечивается наибольшая мощность двигателя. При дальнейшем обогащении смеси или ее обеднении скорость распространения пламени уменьшается; в дервом случае — из-за недостатка воздуха, во втором — вследствие расхода части тепла на его подогрев.

Следует отметить, что оптимальность процесса сгорания топлива при прочих равных условиях определяется его своевременным началом и продолжительностью (скоростью). В случае раннего воспламенения основное сгорание будет протекать еще во время сжатия, что приведет к значительным потерям мощности. Позднее зажигание сместит процесс горения на ход расширения и тоже вызовет потери мощности и экономичности. При увеличении скорости сгорания мощность двигателя повышается вследствие приближения рабочего цикла к теоретическому.

Однако при слишком быстром сгорании работа двигателя сопровождается повышенными ударными нагрузками на его детали.

Для повышения топливной экономичности важное значение имеет вопрос расширения предела обеднения смеси при воспламенении и горении. Обеднение смеси способствует повышению индикаторного КПД двигателя, что позволяет получить существенную экономию топлива на частичных нагрузках. На предел возможного обеднения оказывает существенное влияние химический состав топлива. Так, если для жидких углеводородных топлив предельное значение коэффициента избытка воздуха а составляет 1,15…1,2; углеводородных газов 1,2…1,3, то для спиртовых топлив 1,25… 1,30. Качественное приготовление топливно-воздушной смеси и в особенности ее полное испарение и однородность состава также способствуют расширению предела обеднения.

В ряде случаев процесс распространения пламени нарушается и возникает так называемое аномальное сгорание. Одним из распространенных видов аномального сгорания является калильное зажигание. Это явление связано с тем, что в некоторых случаях при перегреве двигателя происходит самопроизвольное воспламенение рабочей смеси от «горячих точек». Такими точками (или зонами) могут являться клапаны, наиболее выступающие части свечей зажигания, нагары, образующиеся при сгорании топлива, и др.

Наиболее характерным проявлением калильного зажигания является продолжение работы двигателя в виде кратковременного неустойчивого «дерганья» после его выключения. При работе форсированных двигателей на режимах повышенных нагрузок калильное зажигание в некоторых случаях является причиной преждевременного (т. е. до появления искры на свече зажигания) воспламенения рабочей смеси. Это ведет к перегреву двигателя, падению его мощности из-за смещения сгорания на линию сжатия, а также способствует возникновению детонации.

Вследствие увеличения нагрузок на детали калильное зажигание ведет к повышенному износу двигателя. В то же время интенсивное калильное зажигание может вызвать прогорание и разрушение поршней, обгорание их кромок и клапанов, залегание колец и даже поломку шатунов и обрыв коленчатых валов.

Калильное зажигание может вызываться двумя источниками различной природы: горячими металлическими поверхностями и нагарами. В первом случае зажигание устраняется с помощью улучшения конструкции камер сгорания, обеспечения отвода тепла от перегреваемых поверхностей, использования «холодных» клапанов и свечей и др.

В отличие от металлических поверхностей нагар при взаимодействии с кислородом воздуха может саморазогреваться и становиться источником воспламенения топливной смеси даже при низких температурах подогрева. Калильная активность нагара зависит главным образом от содержания в бензинах ароматических углеводородов, их строения и молекулярного веса. В частности, с увеличением молекулярного веса образуется более активный нагар. Поэтому основным способом борьбы с калильным зажиганием от нагара является ограничение содержания в бензинах ароматических углеводородов, а также использование в бензинах различных присадок, изменяющих состав и свойства нагара.

При использовании бензинов, не соответствующих требованиям двигателя, на ряде режимов его работы может возникать особый вид аномального сгорания — детонационное сгорание. Это широко известное явление проявляется в звонком металлическом стуке, дымлении отработавших газов и резком перегреве двигателя.

Причиной детонационного сгорания является образование неустойчивых перекисных соединений при окислении углеводородов топлива. При повышенных температурах и давлениях в камере сгорания перекисные соединения разлагаются с выделением большого количества тепла. Процесс разложения носит взрывной характер, в результате чего в цилиндре возникают ударные волны и скорость распространения пламени возрастает до 2000… 2500 м/с (рис. 10, кривая г). Перекисные соединения образуются при сгорании топлива всегда, но детонация возникает лишь при их определенном (критическом) содержании для определенных условий (давления и температуры) в цилиндре. Чем выше давление и температура в цилиндрах, тем при меньшем содержании перекисных соединений начинается переход нормального сгорания в детонационное.

Главная опасность детонации связана с перегревом камеры сгорания и днища поршня из-за высоких температур в детонационной волне и усиления теплоотдачи. Кроме того, детонационные волны, многократно отражаясь от стенок, разрушают смазочный слой на поверхности гильзы и тем самым способствуют увеличению износов цилиндра и поршневых колец. Детонация также ведет к повышенным вибрационным нагрузкам на детали цилиндро-поршневой группы. При детонации мощность двигателя падает, а расход топлива увеличивается. Поэтому длительная работа двигателя с детонацией недопустима.

Возникновению детонации способствует увеличение продолжительности пребывания последних порций топлива в камере сгорания, ведущее к ускорению образования перекисных соединений. Поэтому увеличение частоты вращения коленчатого вала и уменьшение угла опережения зажигания ведет к подавлению детонации благодаря уменьшению времени нахождения порции топливной смеси в цилиндре. Таким образом, при возникновении детонации ее можно устранить с помощью таких мер, как прикрытие дросселя, уменьшение загрузки автомобиля, переход на более высокие частоты вращения коленчатого вала двигателя путем включения низшей передачи и уменьшения угла опережения зажигания. Однако эти способы можно использовать лишь в крайних случаях и кратковременно, так как все они ведут к увеличению расхода топлива, а в ряде случаев — к снижению мощности двигателя.

Количество образующихся перекисей в наибольшей степени зависит от состава бензина. Поэтому наиболее эффективным способом борьбы с детонацией является повышение детонационной стойкости бензинов. Под детонационной стойкостью (или антидетонационными свойствами) бензинов понимается их способность противостоять возникновению детонации в двигателе. Основным показателем детонационной стойкости бензинов является октановое число, определение которого осуществляется на специальных одноцилиндровых моторных установках с переменной степенью сжатия. Детонационная стойкость бензина на этих установках оценивается по сравнению с известной детонационной стойкостью эталонных топлив. В качестве таких топлив используются смеси изооктана, детонационная стойкость которого принята за 100 единиц, и гептана, октановое число которого равно 0. Определение детонационной стойкости бензина заключается в подборе такой эталонной смеси изооктана и гептана, интенсивность детонации которой, регистрируемая с помощью прибора, соответствует интенсивности детонации испытуемого бензина при одной и той же степени сжатия. Под октановым числом бензина понимается показатель, равный процентному содержанию изооктана в эталонной смеси с гептаном, эквивалентной по детонационной стойкости этому бензину.

Октановое число автомобильных бензинов определяют двумя методами — моторным и исследовательским. Режим испытаний по исследовательскому методу менее напряженный, чем по моторному, в связи с чем получаемое октановое число несколько выше, чем определенное по моторному методу. Разница между исследовательским и моторным октановым числами называется «чувствительностью» бензина и зависит от его состава.

В СССР для определения октановых чисел бензинов ранее выпускались установки ИТ9-2 и ИТ9-6. Установка ИТ9-2 предназначена для определения октанового числа по моторному методу, ИТ9-6—по исследовательскому. В настоящее время эти установки сняты с производства и вместо них выпускается одна универсальная установка УИТ -65, позволяющая определять октановые числа по обоим методам. Эта установка оборудована электронным прибором для измерения интенсивности детонации и автоматическими устройствами для поддержания требуемого режима испытаний.

Условия сгорания топливной смеси в двигателе существенно отличаются от режима оценки октановых чисел бензинов на установке УИТ -65. Поэтому для определения фактической детонационной стойкости бензинов, а также требований двигателя по этому показателю используется специальная методика детонационных испытаний двигателей и автомобилей. Метод детонационных испытаний позволяет получить детонационную характеристику двигателя во всем диапазоне его рабочих частот, оценить фактическую детонационную стойкость бензина и на этой основе установить его соответствие требованиям двигателя.

Детонационная стойкость бензинов обусловлена, прежде всего, требованиями двигателя и главным образом его степенью сжатия. При увеличении степени сжатия на единицу требуется повысить детонационную стойкость бензина на 4…8 октановых единиц. Исторически развитие двигателей с принудительным воспламенением шло по пути непрерывного увеличения степени сжатия и соответственно повышения октановых чисел используемых бензинов., Такая тенденция обусловлена ростом мощности

и снижением расхода топлива при увеличении степени сжатия двигателя. Однако повышение детонационной стойкости бензинов связано с ростом их стоимости и, главное, увеличением затрат нефтяного сырья. Поэтому в настоящее время оптимальный уровень детонационной стойкости бензинов устанавливается с химмотологических позиций — на основе разумного компромисса между автомобильной и нефтеперерабатывающей промышленностью, обеспечивающего наибольший народнохозяйственный эффект.

Основным способом повышения детонационной стойкости бензинов является исключение из их состава или сведение к минимуму содержания углеводородов, образующих при сгорании большое количество перекисных соединений, и использование более стойких углеводородов.

Вторым способом является введение в состав бензина специальных а н-тидетонационных присадок (антидетонаторов), разрушающих в процессе горения образующиеся перекиси или препятствующие их возникновению.

Детонационная стойкость бензинов определяется их компонентным составом и строением содержащихся углеводородов. Как было показано выше, товарные бензины получаются смешением продуктов прямой перегонки нефти и вторичных процессов ее переработки. При этом одним из важнейших требований, определяющих состав бензинов, является обеспечение необходимой детонационной стойкости (октанового числа).

Большинство бензинов прямой перегонки имеет невысокие октановые числа в пределах 40…50 ед., что связано с содержанием в них большого количества парафиновых углеводородов с низкой детонационной стойкостью. Октановые числа бензинов термического крекинга выше и находятся в пределах 64…70 ед. Наибольшей детонационной стойкостью характеризуются бензины каталитического риформинга — платформинга, содержащие значительное количество ароматических углеводородов. В платформинге обычного режима получают бензины с октановым числом по исследовательскому методу 82…85 ед. При жестком режиме платформинга содержание ароматических углеводородов в бензине может быть повышено до 70%, что обеспечивает его октановое число в пределах 95…97 ед.

Перечисленные компоненты являются базовыми для приготовления товарных сортов бензинов, при этом также могут дополнительно вводиться и другие компоненты. Такие бензины обычно содержат значительное количество дорогостоящих высокооктановых компонентов, кроме того, их производство связано с дополнительным расходом нефти. Поэтому в основной массе выпускаемых бензинов требуемая детонационная стойкость достигается за счет добавки антидетонаторов.

Главная → Справочник → Статьи → Форум

Остались вопросы по теме:

"Особенности сгорания бензинов в двигателе"

© 2007-2017 Строй-Техника.Ру - информационная система по строительной технике.

Материалы: http://stroy-technics.ru/article/osobennosti-sgoraniya-benzinov-v-dvigatele


Back to top