1 ≫
-
Система питания двигателя
Общие сведения
Система питания предназначена для хранения топлива, подачи в цилиндры топлива и воздуха раздельно, либо приготовления топливно-воздушной (горючей) смеси с последующей подачей ее в цилиндры двигателя, отвода из цилиндров продуктов сгорания, а также для снижения уровня шума из-за выхлопа отработавших газов при работе двигателя.
В зависимости от выполняемых функций элементы системы питания делятся на три составные группы:
- приборы, обеспечивающие подготовку и подачу воздуха (воздушная группа);
- приборы, обеспечивающие подготовку и подачу топлива (топливная группа);
- приборы, обеспечивающие отвод отработавших газов в окружающую среду (группа отвода и глушения отработавших газов).
Исходя из назначения, система питания должна обеспечить:
- точное дозирование топлива (подачу необходимого количества);
- подачу в цилиндры чистого воздуха в необходимом количестве;
- качественное приготовление горючей смеси;
- своевременную подачу топлива или горючей смеси в цилиндры двигателя;
- удаление продуктов сгорания и их глушение при выхлопе в окружающую среду;
- нейтрализацию вредных веществ, содержащихся в отработавших газах.
Мощность, экономичность двигателя и токсичность отработавших газов зависят от полного и быстрого сгорания топлива. Во многом это определяется работой системы питания.
Классификация систем питания
В зависимости от используемого вида топлива поршневые двигатели внутреннего сгорания, наиболее широко применяемые на современных автомобилях, подразделяют на дизельные, бензиновые (карбюраторные и с впрыском топлива) и газовые. Термодинамические процессы и циклы этих типов двигателей подробно рассмотрены в разделе «Термодинамика».
В дизельных двигателях системы питания подразделяют по следующим признакам:
- по способу движения топлива - тупиковые и с циркуляцией;
- по типу механизма подачи – с объединенным насосом и форсункой (этот механизм называют насос-форсунка, см. рис. 1) и с разделенными насосом и форсунками;
- аккумуляторные (типа Common Rail).
В двигателях с искровым (принудительным) зажиганием применяют системы питания карбюраторные и с впрыскиванием бензина, а также газовые системы питания.
Состав смеси
Для полного сгорания 1 кг топлива необходимо примерно 15 кг воздуха (точнее, для бензина – 14,8 кг, для дизельного топлива – 14,4 кг), или для 1 грамма топлива примерно 15 грамм воздуха.
В цилиндр двигателя за один цикл при полной нагрузке (в зависимости от объема цилиндра и режима работы) подается 40…80 мг топлива. Это количество называют цикловой подачей топлива .
Следовательно, для сгорания цикловой подачи требуется точное количество воздуха, примерно равное 600…1200 мг. Это количество называют цикловой подачей воздуха .
Состав смеси оценивают по коэффициенту избытка воздуха α , определяемому, как отношение количества воздуха Gдв , действительно поступившего в цилиндр, к теоретически необходимому количеству воздуха Gвт :
Теоретически необходимое количество воздуха – это количество воздуха, необходимое для полного сгорания топлива, поступившего в цилиндр двигателя.
Более полно процессы горения топлива описаны в разделе сайта «Термодинамика».
По составу различают смесь нормальную (α = 1), бедную (α > 1) и богатую (α < 1). Применяют также понятия обедненная смесь (α = 1,1…1,15), обогащенная смесь (α = 0,8…0,9) и пределы воспламенения смеси.
В бензиновых двигателях при α < 0,4 и α > 1,6 смесь не воспламеняется. Дизели работают на бедных смесях α = 1,4…2,0.
Различают пять режимов работы двигателя: основной, перегрузки, холостого хода, пуска и ускорения (например, при трогании с места, обгоне и разгоне). Для работы на каждом из этих режимов двигателю требуется различная мощность и, соответственно, горючая смесь разного состава.
Наиболее экономичная работа двигателя достигается на обедненной смеси (1,05 ≤ α ≤ 1,15), а наибольшую мощность он развивает на обогащенных составах (0,8 ≤ α ≤ 0,95). Чем беднее состав горючей смеси, тем вероятность полного сгорания топлива больше, и наоборот. Поэтому режимы работы двигателя, требующие обогащенной горючей смеси, а тем более богатой, являются неэкономичными. Они же становятся причиной наибольшего загрязнения окружающей среды продуктами неполного сгорания топлива, среди которых есть отравляющие и канцерогенные вещества.
Любой из составов горючей смеси должен отвечать требованиям, обеспечивающим качество смеси:
- мелкое распыление топлива в слоях воздуха;
- тщательное перемешивание частиц топлива с воздухом (качественное смесеобразование);
- однородность, т. е. равномерное распределение топлива в воздухе по всему объему смеси.
Изменяя количество топлива при неизменной подаче воздуха (в дизелях) или и количество воздуха, и количество топлива (в бензиновых и газовых двигателях), можно получить смесь разного состава – это качественное регулирование горючей смеси .
Изменение количества смеси одного состава (в бензиновых и газовых двигателях) называют количественным регулированием горючей смеси .
Дозирование топлива
Мощность двигателя зависит от количества топлива (цикловой подачи), сгорающего в цилиндрах в рабочем цикле, и частоты вращения коленчатого вала. Так как для выполнения конкретной работы двигателю автомобиля требуется различная мощность, то возникает необходимость изменения цикловой подачи во времени. Каждому режиму нагрузки должна соответствовать точная цикловая подача топлива.
Это означает, что система питания должна обеспечить ее регулирование в процессе работы машины, а также равномерность подачи топлива по цилиндрам.
Огромное значение для повышения динамических характеристик двигателя имеет наполняемость цилиндров воздухом. Чем больше воздуха в процессе впуска успеет зайти в цилиндры, тем большую порцию топлива можно впрыснуть при прочих равных условиях. Наполняемость напрямую зависит от аэродинамического сопротивления впускного и выпускного трактов системы питания.
В качестве примера: значительная часть потенциала мощности теряется в диффузорах карбюратора и в глушителе, поскольку эти элементы системы питания оказывают существенное сопротивление воздушным и газовым потокам. В двигателях, оборудованных системами питания с впрыском топлива аэродинамическое сопротивление впускного тракта меньше, чем в карбюраторных двигателях. Для улучшения наполняемости цилиндров воздухом на многих мощных двигателях устанавливают специальные компрессоры.
Момент зажигания (впрыскивания) топлива
В карбюраторных (бензиновых) двигателях топливо подается в цилиндр в процессе впуска, в дизелях оно впрыскивается через форсунку в самом конце процесса сжатия. От момента начала впрыскивания топлива зависят динамические и экономические показатели работы дизеля, также как и от момента зажигания смеси – показатели работы бензинового двигателя.
Угол поворота коленчатого вала до ВМТ, при котором подается искра (или начинается впрыск топлива – у дизеля), называют углом опережения зажигания – УОЗ (углом опережения впрыскивания – УОВ) и обозначают буквой θ .
Испытания двигателей показывают, что каждый двигатель на конкретном режиме работы имеет оптимальный угол опережения зажигания (впрыскивания) θопт , при котором мощность максимальная, а удельный расход топлива минимальный. Поэтому в системе питания должны быть предусмотрены специальные устройства для регулировки угла опережения зажигания (впрыскивания).
Главная страница
Устройство автомобилей
- Экзаменационные билеты
для группы Т-21 (IV семестр)
для группы Т-31 (V семестр)
для группы Т-31 (VI семестр)
КГБПОУ «Каменский агротехнический техникум»
Источники: http://k-a-t.ru/dvs_pitanie/1/index.shtml
2 ≫
-
Главным предназначением топливной системы автомобиля являются подача топлива из бака, фильтрация, образование горючей смеси и подача ее в цилиндры. Существует несколько типов топливных систем для автомобильных двигателей. Самая распространенная в 20-ом веке была карбюраторная система подачи смеси топлива. Следующим этапом стало развитие впрыска топлива при помощи одной форсунки, так называемый моновпрыск . Применение этой системы позволило уменьшить расход топлива. В настоящее время используется третья система подачи топлива – инжекторная . В этой системе топливо под давлением подается непосредственно в впускной коллектор. Количество форсунок равно количеству цилиндров.
Схема топливной системы: инжекторный и карбюраторный вариант
Все cистемы питания двигателя похожи, отличаются только способами смесеобразования. В состав топливной системы входят следующие элементы:
- Топливный бак , предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации.
- Топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования.
- Устройства смесеобразования ( карбюратор, моновпрыск, инжектор ) – это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в такт работы двигателя (такт впуска).
- Блок управления работой устройства смесеобразования (инжекторные системы питания) – сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля.
- Топливный насос , обычно погружной, предназначен для закачивания топлива в топливопровод. Представляет собой электродвигатель, соединенный с жидкостным насосом, в герметичном корпусе. Смазывается непосредственно топливом и длительная эксплуатация с минимальным количеством топлива, приводит к выходу из строя двигателя . В некоторых двигателях топливный насос крепился непосредственно к двигателю и приводился в действие вращением промежуточного вала, или распредвала.
- Дополнительные фильтры грубой и тонкой очистки . Установленные фильтрующие элементы в цепь подачи топлива.
Рассмотрим работу всей системы в целом. Топливо из бака всасывается насосом и по топливопроводу через фильтры очистки подается в устройство смесеобразования. В карбюраторе топливо попадает в поплавковую камеру, где потом через калиброванные жиклеры подается в камеру смесеобразования. Смешавшись с воздухом смесь через дроссельную заслонку поступает в впускной коллектор. После открытия впускного клапана подается в цилиндр. В системе моно впрыска топливо подается на форсунку, которая управляется электронным блоком. В нужное время форсунка открывается, и топливо попадает в камеру смесеобразования, где, как и в карбюраторной системе смешивается с воздухом. Дальше процесс такой же, как и в карбюраторе.
В инжекторной системе топливо подается к форсункам, которые открываются управляющими сигналами от блока управления. Форсунки соединены между собой топливопроводом, в котором всегда находится топливо. Во всех топливных системах существует обратный топливопровод, по нему сливается излишек топлива в бак.
Система питания дизельного двигателя похожа на бензиновую. Правда, впрыск топлива происходит непосредственно в камеру сгорания цилиндра, под большим давлением. Смесеобразование происходит в цилиндре. Для подачи топлива под большим давлением применяется насос высокого давления (ТНВД).
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:
Источники: http://autoustroistvo.ru/dvigatel-dvs/sistema-pitaniya-dvigatelja/
3 ≫
-
Система питания двигателя автомобиля предназначена для подачи, очистки и хранения топлива, очистки воздуха, изготовления горючей смеси и пуска ее в цилиндры двигателя. Качество и объем этой смеси при различных рабочих режимах мотора должно быть разным, что также находится в компетенции системы питания двигателя. Так как мы будем рассматривать работу бензиновых моторов, в качестве топлива у нас всегда будет выступать бензин. В зависимости от типа устройства, выполняющего подготовку топливовоздушной смеси, силовые агрегаты могут быть карбюраторными, инжекторными или оборудованы моновпрыском. Для обеспечения экономичной и надежной работы мотора, бензин должен отличаться достаточной детонационной стойкостью и хорошей испаряемостью.
Детонацией ( см. детонация двигателя ) называется очень быстрое сгорание топлива, похожее на взрыв. Работа мотора с детонацией недопустима, т.к. сопровождается ударной нагрузкой на поршневые пальцы, коренные и шатунные подшипники, местным нагревом составляющих, дымным выпуском, прогоранием клапанов и поршней, увеличением топливного расхода, уменьшением мощности двигателя. На появление детонации также влияют нагрузка и скоростной режим мотора, опережение зажигания, нагарообразование на головке цилиндров и поршне ( см. работа поршня ) . Антидетонационные свойства бензинового топлива оцениваются октановой величиной. Бензин сравнивают со смесью следующих топлив: изооктан, гептан. Гептан сильно детонирует – из-за этого для него октановое число условно принимают равное нулю. Второе топливо, изооктан, слабо детонирует – октановое число для него условно принимают в 100 единиц.
Октановым числом топлива является процентное количество изооктана в такой смеси с гептаном, которая по своей детонационной стойкости равноценна применяемому топливу. К примеру, если смесь, состоящая из 24% гептана и 76% изооктана (по объему), по детонационным качествам соответствует проверяемому бензиновому топливу, то октановое число этого бензина будет равно 76. Чем больше октановое число топлива, тем выше его стойкость к детонации.
Начнем с системы питания карбюраторного двигателя. Ранее мы выяснили, что в цилиндр поступает рабочая смесь (или образуется там), а после ее сгорания образовавшиеся там газы выводятся из него наружу. Теперь рассмотрим, как и за счет чего образуется рабочая смесь и куда выводятся продукты сгорания.
Принципиальная схема системы питания карбюраторного двигателя ( см. устройство двигателя автомобиля ) представлена ниже.
Составляющие системы питания карбюраторного двигателя:
- топливный бак;
- топливный насос;
- топливопроводы;
- фильтры очистки топлива;
- воздушный фильтр;
- инжектор или карбюратор.
Топливный бак – это металлическая емкость, способная вмещать от 40 до 80 литров, чаще всего монтируется в заднюю часть автомобиля ( см. топливный бак автомобиля ). Бензобак наполняется топливом через горловину, с предусмотренной трубкой для выхода воздуха в процессе заправки. Некоторые автомобили имеют бензобак, в нижней части которого находится сливное отверстие, позволяющее полностью очистить топливный бак от бензина и нежелательных составляющих – мусора, воды.
Бензин, залитый в топливный бак автомобиля, проходит предварительно очистку через сетчатый фильтр, который установлен на топливозаборнике внутри бака. В бензобаке также находится датчик уровня топлива (специальный поплавок с реостатом), данные которого отображаются на щитке приборов.
Топливный насос отвечает за подачу топлива в систему впрыска, а также поддерживает необходимое рабочее давление в топливной системе ( см. топливный насос двигателя ). Данный механизм устанавливается в топливном баке и оснащен электрическим приводом. В случае необходимости может применяться дополнительный (подкачивающий) насос. В топливном баке вместе с топливным насосом устанавливается специальный датчик уровня топлива. В конструкции датчика лежит потенциометр и поплавок. Перемещение поплавка при изменении наполненности топливного бака приводит к изменению местоположения потенциометра. В свою очередь, это приводит к увеличению сопротивления в цепи и понижению напряжения на указатель топливного запаса.
Очистка поступающего топлива происходит в топливном фильтре. Современные автомобили имеют топливный фильтр со встроенным редукционным клапаном, который регулирует рабочее давление в топливной системе. Все излишки топлива по сливному топливопроводу отводятся от клапана. На силовых агрегатах с непосредственным топливным впрыском редукционный клапан не устанавливается в топливном фильтре.
Чтобы очистить топливо от различных механических примесей, используют фильтры тонкой и грубой очистки. Фильтры-отстойники, предназначенные для грубой очистки, выполняют отделение топлива от крупных механических примесей и воды. Фильтр-отстойник состоит из основного корпуса, фильтрующего элемента и отстойника. Фильтрующий элемент – это конструкция, собранная из тонких пластин, толщиной 0,14 мм. Эти пластины имеют отверстия и выступы величиной 0,05 мм. Комплект пластин установлен на стержень и с помощью пружины прижимается к корпусу. Собранные пластины имеют щели между собой, через которые проходит топливо. Вода и крупные механические примеси скапливаются на дне отстойника и через отверстие пробки удаляются.
Топливный фильтр системы топлива дизельных силовых агрегатов ( см. устройство дизельного двигателя ) имеет немного другую конструкцию, но суть работы остается аналогичной. С определенной периодичностью выполняется замена этого фильтра в сборе или исключительно в его фильтрующей составляющей.
Чтобы очистить топливо от мелких механических примесей, используют фильтры тонкой очистки. Данная разновидность фильтров состоит из основного корпуса, фильтрующего керамического или сетчатого элемента и стакана-отстойника. Фильтрующий керамический элемент – пористый материал, который обеспечивает лабиринтное движение топлива. Крепление фильтра – винт и скоба.
Топливопроводы соединяют приборы всей топливной системы и изготавливаются из латунных, стальных и медных трубок.
В системе питания двигателя топливо циркулирует по топливопроводам. Топливопроводы бывают подающие и сливные. В подающем топливопроводе поддерживается постоянное рабочее давление. По сливному топливопроводу все излишки топлива отходят в бак для топлива.
Воздушный фильтр предназначен для очистки от пыли поступающего в карбюратор воздуха. Пыль содержит мельчайшие кристаллики кварца, которые оседают на смазанных деталях, что в дальнейшем приводит к их износу. По способу очистки воздуха, воздушные фильтры делятся на сухие и инерционно-масляные. Инерционно-масляный фильтр в своей конструкции имеет корпус с масляной ванной, фильтрующий элемент, изготовленный из синтетического материала и воздухозаборник.
При работе мотора проходящий через кольцевую щель во внутренней части корпуса воздух соприкасается с масляной поверхностью и резко изменяет траекторию своего движения. В результате этого большие частицы пыли, находящиеся в воздухе, остаются на масляной поверхности. После этого воздух попадает в фильтрующий элемент, в котором происходит его очистка от мельчайших частичек пыли и попадает в карбюратор. Благодаря этой системе воздух проходит двойную очистку. При сильном засорении фильтр промывается.
Сухой воздушный фильтр состоит из корпуса, фильтрующего элемента из пористого картона и воздухозаборника. В случае необходимости фильтрующий элемент можно заменить.
Карбюратор ( см. устройство карбюратора ) – прибор, служащий для приготовления горючей смеси из воздуха и легкого жидкого топлива, для питания карбюраторных моторов. Распыляемое топливо в карбюраторе перемешивается с воздухом и затем подается в цилиндры.
Система питания инжекторного двигателя служит для образования топливно-воздушной смеси с помощью топливного впрыска.
Если вкратце рассмотреть работу системы питания двигателя, то выглядит она следующим образом.
Топливо (в данном случае бензин) за счет разрежения воздуха, создаваемого в системе при движении поршня от ВМТ к НМТ, а также с помощью топливного насоса, поступает в карбюратор автомобиля, проходя через фильтры. Топливный насос подает бензин из бака. Топливные насосы подразделяются на электрические и механические. Механические топливные насосы устанавливаются на автомобилях с карбюраторными силовыми агрегатами. Автомобили, оборудованные электронным впрыском, оснащены электрическим насосом. В карбюраторе пары бензина смешиваюется с поступающим воздухом, образуя топливно-воздушную смесь, которая и направляется в цилиндр. После совершения рабочего цикла (сгорания смеси), поршень, двигаясь вверх, выдавливает отработавшие газы через выпускной клапан, которые в конечном итоге выпускаются в атмосферу.
Работа системы питания двигателя с системой впрыска (инжекторной) происходит аналогичным образом.
Рабочие режимы системы питания двигателя
В зависимости от дорожных условий и целей водитель может использовать разные режимы езды. Им соответствуют и определенные рабочие режимы системы питания двигателя, каждому из которых принадлежит топливно-воздушная смесь особого состава. Для каждого режима работа системы питания двигателя будет иметь свои особенности.
- Качество смеси будет богатым при запуске холодного мотора. Потребление воздуха при этом минимальное. В данном режиме возможность движения категорически исключается. В противном случае это вызовет повышенное потребление топлива и износ деталей двигателя.
- Состав смеси будет достаточно обогащенным при использовании «холостого хода», который применяется во время движения «накатом» или работе включенного мотора в прогретом состоянии.
- Состав смеси будет обедненным при передвижении с частичными нагрузками.
- Состав смеси также будет обогащенным в режиме полных нагрузок при езде на высокой скорости.
- Состав смести будет обогащенным, максимально приближенным к богатому, при езде в условиях резкого ускорения.
Выбор рабочих условий системы питания двигателя должен быть оправдан потребностью движения в определенном режиме.
Так в наше время в автомобилях получила распространение модель инжекторных (впрысковых) двигателей, поэтому нам также необходимо рассмотреть систему питания инжекторного двигателя. Отличительной особенностью инжекторных двигателей стало отсутствие карбюратора, который заменен новыми, современными элементами системы питания двигателя. Преимущество ее еще в том, что водитель, надавливая педаль газа, регулирует только поток воздуха, поступающий в цилиндры, а состав и качество образующейся рабочей смеси контролирует встроенный в систему бортовой компьютер.
Сам принцип работы бортового компьютера системы питания инжекторного двигателя представлен ниже.
Здесь изменен сам процесс получения топливно-воздушной смеси. Так, топливный насос вместо механического - стал электрическим и размещен непосредственно в топливном баке автомобиля. Кроме того, он подает топливо в систему сразу под высоким давлением. Топливо поступает в топливную рампу, в которой расположены форсунки. Через них бензин впрыскивается непосредственно в определенный цилиндр в заданное время, где смешивается уже с воздухом. Какое количество топлива нужно подать в конкретный цилиндр и в нужное время — определяет этот самый бортовой компьютер. На это влияет объем поступившего воздуха, температура его и двигателя, скорость вращения коленвала и т.д. Считывая все эти показатели, программа в компьютере вычисляет интервал времени, при котором срабатывает клапан на каждой форсунке, открывающий доступ бензина под давлением в цилиндры двигателя. Так осуществляется автоматически контроль подачи топлива в системе питания инжекторного двигателя. Если ДВС получил название «сердца» автомобиля, то здесь мы столкнулись с его «мозгом».
Плюсы подобных систем очевидны: экономия расхода, снижение токсичности, увеличение срока эксплуатации двигателя и более рациональное его использование в процессе работы. Но есть и минус – это усложнение конструкции самой системы питания инжекторного двигателя за счет увеличения электронных устройств, которые бывают очень «капризны» при перепадах температур, увеличенной влажности и значительных колебаниях при длительной езде по неровной местности (бездорожью). Однако конструкторы и здесь нашли способы минимизировать риск возникновения неисправностей в таких ситуациях.
Устройство системы питания инжекторного двигателя представлено ниже.
Здесь видны синие стрелки, показывающие направление вывода отработавших газов. Таким образом, от устройства системы питания инжекторного двигателя мы дошли до системы выпуска отработавших газов. Что она из себя представляет? Возвращаемся опять к цилиндру двигателя. После совершения рабочего хода поршня наступает такт выпуска при движении поршня от НМТ к ВМТ. При этом открывается выпускной клапан, и газы выводятся из цилиндра. Весь этот процесс сопровождается громким шумом, а сами газы — высокой скоростью вывода, температурой и токсичностью. Для комплексного решения всех этих проблем в автомобиле и предусмотрена система выпуска отработавших газов. Газы из цилиндра через выпускной коллектор попадают в нейтрализатор, выполняющий роль фильтра, а затем в глушитель. В глушителе имеется несколько последовательно соединенных камер с отверстиями. Вся конструкция эта выглядит как змеевик. Поток газов, проходя через камеры, постоянно меняя направление, глушится, то есть уменьшается шум и их температура. После чего через выхлопную трубу автомобиля они выводятся в атмосферу.
В качестве завершения знакомства с системой питания инжекторного двигателя и выпуска отработавших газов стоит упомянуть о таком нюансе. Мы выяснили, что при отсутствии подачи воздуха или топлива двигатель автомобиля не заведется или заглохнет при прерывании подачи одного из компонентов. Но, если перекрыть выпуск отработавших газов – результат будет тот же. Двигатель заглохнет, так как не будет создаваться разряжение воздуха в цилиндре. А значит ни новый поток воздуха, ни топливо поступать в него не будут. Это нашло свое применение в промышленных силовых установках на производстве, когда требуется аварийно остановить работу ДВС. Перекрытие выхлопной трубы надежно это гарантирует.
Источники: http://avto-ustroistvo.ru/sistema-pitaniya-dvigatelya.php