Система распределенного впрыска, Я автомобилист

1 ≫

Работа системы распределенного впрыска (многоточечная система впрыска) основана на впрыске топлива в каждый цилиндр отдельной форсункой.

По принципу своей работы системы распределенного впрыска топлива разделяются на системы непрерывного и импульсного впрыска. В зависимости от вида управления различают системы распределенного впрыска с механическим и электронным управлением.

Известными конструкциями системы распределенного впрыска топлива являются системы K-Jetronic, KE-Jetronic и L-Jetronic.

Система распределенного впрыска K-Jetronic

Предс тавляет собой механическую систему непрерывного впрыска топлива. Применялась до начала 90-х годов 20-го века.

  1. Топливный насос (электрический)
  2. Аккумулятор топлива
  3. Фильтр топливный
  4. Регулятор прогрева
  5. Форсунка инжекторная
  6. Инжектор пусковой
  7. Дозатор топлива
  8. Расходомер вохдуха
  9. Термореле
  10. Клапан добавочного воздуха

Дроссельная заслонка служит для регулирования объема поступающего воздуха. Заслонка имеет механический привод от педали газа.

Расходомер воздуха обеспечивает измерение объема воздуха за счет пропорционального перемещения напорного диска. Напорный диск соединен с плунжером дозатора-распределителя с помощью рычагов. При открытии дроссельной заслоники во впускной коллектор поступает больший объем воздуха, который перемещает напорный диск расходомера. Напорный диск крепится на рычаге. На оси рычага закреплен другой рычаг с роликом и регулировочным винтом. Ролик упирается в нижний конец плунжера дозатора-распределителя.

Дозатор-распределитель служит для распределения топлива по форсункам цилиндров на всех режимах работы двигателя. Распределение топлива осуществляется за счет перемещения плунжера. Снизу на плунжер воздействует рычаг напорного диска, сверху – управляющее давление, которое создает регулятор управляющего давления. Согласованное перемещение плунжера и напорного диска обеспечивает стехиометрическое соотношение воздуха и бензина в топливно-воздушной смеси.

Регулятор давления питания поддерживает постоянное по величине давление топлива в системе.

Регулятор управляющего давления создает подпорное давление на верхнем конце плунжера, за счет чего достигается обогащение иди обеднение топливно-воздушной смеси. Это необходимо при определенных режимах работы двигателя, в т.ч. при холодном пуске, прогреве на холостом ходу, а также при максимальной нагрузке.

Форсунки впрыска обеспечивают непрерывный впрыск топлива под давлением.

Для обеспечения запуска двигателя при температуре ниже 10°С в системе K-Jetronic применяется инжектор пусковой и клапан добавочного воздуха.

Инжектор пусковой осуществляет при запуске и прогреве двигателя впрыск во впускной коллектор дополнительного количества топлива. Его работа осуществляется под управлением термореле.

Термореле устанавливается в блоке цилиндров двигателя, где отслеживает температуру охлаждающей жидкости. При запуске двигателя термореле включает пусковую форсунку. При достижении охлаждающей жидкости определенной температуры пусковая форсунка отключается.

Клапан добавочного воздуха обеспечивает дополнительную порцию воздуха при запуске двигателя в обход дроссельной заслонки. В исходном положении клапан открыт. По мере прогрева двигателя клапан закрывается (перемещается биметаллическая пластина с диафрагмой клапана).

Холостой ход двигателя регулируется двумя винтами:

  1. количества смеси, устанавливающий частоту вращения коленчатого вала двигателя на холостом ходу;
  2. качества смеси, определяющий содержание угарного газа в отработавших газах.

Принцип действия системы K-Jetronic

При нажатии педали газа открывается дроссельная заслонка. Проходящий через нее воздух перемещает напорный диск расходомера воздуха. Движение диска через рычаги передается на плунжер дозатора-распределителя.

Топливная система подает бензин к дозатору-распределителю, от которого плунжер нагнетает топливо к форсункам впрыска. Форсунки непрерывно впрыскивают топливо во впускной коллектор двигателя. Там оно смешивается с воздухом и образуется топливно-воздушная смесь. При открытии впускных клапанов топливно-воздушная смесь поступает в камеры сгорания двигателя.

Количество топлива поступающего к форсункам определяется положением дроссельной заслонки. Чем больше открыта дроссельная заслонка, тем больше воздуха проходит через впускной коллектор и тем больше топлива подается к форсункам. В зависимости от режимов работы двигателя объем впрыскиваемого топлива регулируется управляющим давлением.

Для увеличения оборотов во время пуска двигателя и работы на холостом ходу во впускной коллектор подается дополнительная порция воздуха через клапан дополнительной подачи воздуха и дополнительная порция топлива пусковой форсункой.

Система распределенного впрыска KЕ-Jetronic

Является механической системой непрерывного впрыска топлива с электронным управлением качественным составом топливно-воздушной смеси. Электромеханическая система KE-Jetronic приобрела широкое распространение с середины 80-х годов 20-го века.

Конструктивно система KЕ-Jetronic построена на основе системы K-Jetronic. Для реализации электронного управления впрыском в систему дополнительно включены электрогидравлический регулятор давления. мембранный регулятор давления, расходомер воздуха с потенциометрическим датчиком. Электронное управление обеспечивают входные датчики и блок управления.

  1. Топливный насос (электрический)
  2. Аккумулятор топлива
  3. Фильтр топливный
  4. Регулятор давления
  5. Форсунка инжекторная
  6. Инжектор пусковой
  7. Дозатор топлива
  8. Расходомер вохдуха
  9. Термореле
  10. Клапан добавочного воздуха
  11. Датчик температурный
  12. Потенциометр дроссельной заслонки
  13. Лямбда-зонд
  14. Блок управления

Регулятор давления предназначен для обеспечения качественного состава топливно-воздушной смеси. В системе KЕ-Jetronic электрогидравлический регулятор давления устанавливается вместо регулятора управляющего давления. Регулятор давления представляет собой электроуправляемый клапан, который регулирует величину управляющего (подпорного) давления. В отличии от системы K-Jetronic управляющее давление подводится не к плунжеру, а к дифференциальным клапанам дозатора-распределителя.

Блок управления преобразует электрические сигналы входных датчиков в управляющее воздействие на исполнительные устройства, в качестве которых выступают электрогидравлический регулятор давления, пусковая форсунка, клапан добавочного воздуха, клапан системы улавливания паров бензина.

Мембранный регулятор давления служит для поддержания требуемого рабочего давления в дозаторе-распределителе. Он устанавливается в возвратной магистрали системы.

Расходомер воздуха обеспечивает количественное регулирование состава топливно-воздушной смеси. В приводе расходомера установлен потенциометрический датчик, который фиксирует величину поворота напорного диска. Перемещение потенциометра на определенный угол воспринимается электронным блоком управления как изменение нагрузки двигателя. Расходомер с потенциометрическим датчиком расширяет область применения мембранного регулятора давления.

Входные датчики фиксируют текущее состояние работы двигателя. На разных типах двигателей может устанавливаться от 4 до 11 входных датчиков.

Принцип действия системы KЕ-Jetronic

При запуске холодного двигателя для быстрого прогрева и устойчивой работы система обеспеивает образование обогащенной топливно-воздушной смеси. На основании сигнала датчика температуры охлаждающей жидкости электронный блок управления закрывает клапан электрогидравлического регулятора давления. Подпорное давление в нижних полостях дифференциальных клапанов дозатора-распределителя уменьшается. Верхние полости дифференциальных клапанов увеличиваются и к форсункам впрыска поступает больше топлива. Смесь становиться обогащенной.

При постоянной частоте вращения коленчатого вала двигателя электрогидравлический регулятор давления не работает (биметаллическая пластина с клапаном находится в среднем положении). Связь «расходомер воздуха — плунжер дозатора-распределителя» обеспечивает образование стехиометрической топливно-воздушной смеси.

При резком открытии дроссельной заслонки происходит обогащение топливно-воздушной смеси. Система рассматривает резкое открытие заслонки как потребность в максимальной мощности. Сигналы от датчика положения дроссельной заслонки и потенциометра расходомера воздуха поступают в электронный блок управления, который активизирует электрогидравлический регулятор давления. Клапан регулятора закрывается, подпорное давление уменьшается, подача топлива к форсункам увеличивается, смесь обогащается.

При торможении двигателем, наоборот, образуется обедненная топливно-воздушная смесь. По команде электронного блока управления клапан электрогидравлического регулятора открывается, подпорное давление в нижних камерах дифференциальных клапанов увеличивается, объем верхних камер дифференциальных клапанов уменьшается, соответственно подача топлива к форсункам уменьшается, смесь обедняется.

При температуре ниже 10°С происходит срабатывание пусковой форсунки и клапана добавочного воздуха.

Дальнейшая работа двигателя осуществляется по совокупности сигналов входных датчиков.

Система распределенного впрыска L-Jetronic

Является системой импульсного впрыска с электронным управлением количественным и качественным составом топливно-воздушной смеси. Для обеспечения импульсного впрыска топлива в системе применены форсунки с электромагнитным управлением.

В сравнении с системами K-Jetronic и KE-Jetronic, импульсный впрыск, реализованный в системе L-Jetronic, обеспечивает топливную экономичность, снижение токсичности отработавших газов и улучшение динамических характеристик автомобиля.

  1. Топливный насос (электрический)
  2. Фильтр топливный
  3. Регулятор давления
  4. Форсунка пусковая
  5. Расходомер воздуха
  6. Термореле
  7. Клапан добавочного воздуха
  8. Потенциометр дроссельной заслонки
  9. Лямбда-зонд
  10. Блок управления

Форсунка впрыска обеспечивает импульсный впрыск топлива за счет электромагнитного управления иглой распылителя.

Регулятор давления топлива служит для поддержания постоянного давления в распределительной магистрали системы, а также для устранения пульсаций топлива, возникающих при работе форсунок впрыска.

Электронный блок управления принимает сигналы от входных датчиков и преобразует их в управляющие воздейтвия на следующие исполнительные устройства, в качестве которых выступают форсунки впрыска, пусковая форсунка и клапан добавочного воздуха.

Основными управляющими параметрами, формируемыми электронным блоком управления, являются необходимый объем впрыскиваемого топлива и время начала впрыска.

Расходомер воздуха обеспечивает количественное регулирование топливно-воздушной смеси. Объем поступающего в систему воздуха отслеживается потенциометрическим датчиком расходомера. В соответствии с объемом воздуха производится впрыск определенного количества топлива.

Для облегчения пуска холодного двигателя и быстрого его прогрева в системе используются пусковая форсунка и клапан добавочного воздуха. Форсунка и клапан управляются электронным блоком.

Пусковая форсунка впрыскивает дополнительную порцию топлива. Работа форсунки обеспечивается термореле и датчиком температуры охлаждающей жидкости. Клапан добавочного воздуха обеспечивает при запуске дополнительную порцию воздуха. Он устанавливается параллельно дроссельной заслонки.

В системе предусмотрена механическая регулировка количества и качества топливно-воздушной смеси на холостом ходу за счет соответствующих винтов. Винт качества устанавливается в обводном канале расходомера воздуха. Он регулирует содержание угарного газа в отработавших газах. Винт количества устанавливается в обводном канале дроссельной заслонки. Он регулирует обороты холостого хода.

Входные датчики фиксируют параметры работы двигателя и преобразуют их в электрические сигналы. В системе L-Jetronic устанавливаются следующие датчики: температуры воздуха, потенциометр расходомера воздуха, положения дроссельной заслонки, высоты над уровнем моря, распределитель зажигания, температуры охлаждающей жидкости, термореле.

Принцип действия системы L-Jetronic

Топливная система обеспечивает подачу бензина к распределительной магистрали, от которой оно поступает к форсункам впрыска. Входные датчики фиксируют температуру, давление и объем поступающего воздуха, температуру, частоту вращения и нагрузку двигателя. Сигналы от датчиков поступают в электронный блок управления.

Электронный блок управления определяет необходимое количество топлива для работы двигателя и подает импульс определенной продолжительности на электромагнитный клапан форсунки впрыска. Форсунка производит впрыск заданного количества топлива в определенное время. При соединении топлива с воздухом образуется топливно-воздушная смесь, которая при открытии впускных клапанов поступает в камеры сгорания двигателя.

При пуске двигателя, его прогреве, а также во время работы под максимальной нагрузкой система обеспечивает образование обогащенной топливно-воздушной смеси. По сигналу датчика положения дроссельной заслонки система распознает указанные режимы и обеспечивает впрыск большего объема топлива. Смесь при этом обогащается.

При температуре ниже 10°С для создания обогащенной топливно-воздушной смеси используется пусковая форсунка и клапан добавочного воздуха.

Разновидностями системы L-Jetronic являют системы LE-Jetronic, LH-Jetronic, которые имеют отдельные конструктивные отличия.

LH-Jetronic

Отличие от L-Jetronic состоит в использовании другого типа расходомера воздуха ( Luftmassenmesser), измеряющего не количество, а массу воздуха. Этот способ дает корректные результаты вне зависимости от температуры и давления воздуха.

  1. Топливный насос
  2. Фильтр топливный
  3. Регулятор давления
  4. Форсунка инжекторная
  5. Расходомер воздуха
  6. Датчик температурный
  7. Регулятор холостого хода
  8. Потенциометр дроссельной заслонки
  9. Лямбда-зонд
  10. Блок управления

М-Мotronic

Система с управлением впрыском и зажиганием от одного блока управления является развитием системы L-Jetronic.

  1. Топливный насос
  2. Фильтр топливный
  3. Регулятор давления
  4. Форсунка инжекторная
  5. Расходомер воздуха
  6. Датчик температурный
  7. Регулятор холостого хода
  8. Потенциометр дроссельной заслонки
  9. Датчик числа оборотов
  10. Лямбда-зонд
  11. Блок управления

Принцип действия системы М-Мotronic

От входных датчиков в электронный блок управления поступают аналоговые сигналы, характеризующие текущее состояние работы двигателя. В аналогово-цифровом преобразователе аналоговые сигналы преобразуются в цифровую информацию.

Электронный бок управления обрабатывает поступающую информацию с помощью программы, заложенной в блок постоянной памяти. Для выполнения вычислений используются блок оперативной памяти. На основании проведенных вычислений формируются электрические сигналы, которые после усиления используются для управления исполнительными механизмами систем двигателя.

Материалы: http://i-motorist.ru/sistema-raspredelennogo-vpryska

2 ≫

С целью снижения токсичности отработавших газов и уменьшения расхода топлива на основе хорошо зарекомендовавшей себя системы «K-Jetronic», фирмой Bosch была создана система непрерывного впрыска с электронным управлением "KE-JETRONIC"

Контрольная схема системы впрыска «KE-JETRONIC»

1 —топливный бак; 2—топливный насос с электроприводом; 3—аккумулятор давления топлива; 4—топливный фильтр; 5— регу-

лятор давления топлива в системе; 6 — измеритель воздуха; 6 а— напорный диск (ротаметр); 6Б— потенциометр; 7—дозатор

топлива; 7 а—управляющий золотник; 7 б—управляющая (рабочая) кромка золотника; 7 в—верхняя камера; 7 г — нижняя камера; 8 — форсунка подачи топлива; 9 — впускная труба; 10 — пусковая форсунка; 11 — термореле времени; 12—дроссельная заслонка; 13—датчик положения дроссельной заслонки; 14—клапан дополнительной подачи воздуха; 15—датчик температуры двигателя; 16—электронный блок управления; 17—электрогидравлический регулятор давления; 18—датчик содержания кислорода; 19— датчик-распределитель зажигания; 20—реле включения топливного насоса; 21—выключатель зажигания; 22— аккумуляторная батарея.

Форсунки могут быть двух типов, такие же как в системе «K-JETRONIC» и форсунки с дополнительным воздушным распыле-

нием. Дополнительный воздух забирается перед дроссельной заслонкой и по специальной магистрали поступает в область

впускного канала. Это улучшает распыление смеси, особенно на холостом ходу, позволяет снизить расход топлива и содержание токсичных веществ в отработавших газах.

1 — форсунка подачи топлива, 2 —дополнительный трубопровод подачи воздуха, 3—впускная труба, 4—дроссельная

А — факел распыла форсунки без дополнительного воздушного распыления; Б — факел распыла форсунки с дополнительным

На рисунке показан разрез регулятора давления, состоящего из сливного канала от дозатора; сливного канала в бак; винта регулировки; контрпружины; уплотнения; канала подачи топлива; тарелки клапана; диафрагмы; регулировочной пружины и клапана.

1 — сливной канал от дозатора, 2 — сливной канал в бак, 3— винт регулировки контрпружины, 4—контрпружина, 5— уплотнение канала слива, 6—канал подачи топлива, 7—тарелка клапана, 8—диафрагма, 9—регулировочная пружина, 10— клапан

Дозатор распределитель топлива с дифференциальными клапанами KE-JETRONIC существенно отличается от применяемого в

системе K-JETRONIC. На рисунке ниже изображен дозатор распределитель состоящий из верхних и нижних камер дифференциальных клапанов топливопроводов к клапанным форсункам; управляющего золотника с рабочей кромкой и дозирующими окнами в гильзе пружины; клапанов в нижних камерах; диафрагм клапанов; уплотнительного кольца; пружины золотника; топливного канала от электрогидравлического регулятора давления; дросселя золотника; сливного канала к топливному баку. Дозатор распределитель имеет

дифференциальные клапаны в соответствии с количеством цилиндров двигателя. Каждый клапан разделен диафрагмой на

верхнюю и нижнюю камеры.

Дифференциальные клапаны поддерживают постоянной разность давления между верхней и нижней камерами независимо от расхода топлива. Разность давления составляет как правило 0,2 кг/см2. С каждым дозирующим окном соединен один дифференциальный клапан. Нижние камеры всех клапанов содержат винтовую пружину, соединены друг с другом кольцевым трубопроводом и соединены с электрогидравлическим регулятором давления. Седло клапана находится в верхней камере. Каждая верхняя камера соединена с форсункой. Они не сообщаются между собой в отличие от нижних. Падение давления на дозирующих окнах определяется усилием винтовой пружины в нижней камере эффективным диаметром диафрагмы а также электрогидравлическим регулятором давления. Если в верхнюю камеру поступает большее количество топлива то диафрагма изгибается вниз и увеличивает выходное поперечное сечение клапана до тех пор пока вновь не установится заданное разностное давление. Если расход уменьшается, то уменьшается и поперечное сечение клапана до тех пор, пока не установится разностное давление 0,2 кг/см2. Верхняя камера отделена от нижней камеры диафрагмой. Таким образом, на диафрагму действует равновесие сил которое для любого количества топлива поддерживается путем регулирования попе речного сечения клапана

1 — подача топлива под давлением системы на верхнюю плоскость золотника; 2—верхняя камера дифференциального кла-

пана, 3 — топливопровод к клапанной форсунке 4— управляющий золотник, 5—управляющая кромка и дозирующее окно, 6—

пружина клапана, 7—диафрагма клапана, 8 — нижняя камера дифференциального клапана, 9 — осевое уплотнительное кольцо, 10 — пружина, 11 — топливный канал от электрогидравлического регулятора давления, 12—дроссель, 13—сливной канал

Электронный блок управления (ЭБУ) содержит аналоговые и цифровые микросхемы а также транзисторы диоды сопротивле-

ния и конденсаторы Печатные платы на которых все это расположено вставлены в корпус электронного блока на рисунке ниже.

Блок управления соединен с остальными устройствами автомобиля при помощи двадцатипятиконтактного штепсельного разъема, через который поступают сигналы различных датчиков. Блок управления обрабатывает выходные сигналы датчиков и на их основе рассчитывает управляющий ток для электрогидравлического регулятора давления по занесенной в память блока программе.На блок управления подаются следующие сигналы напряжение аккумуляторной батареи; сигналы с датчика положения дроссельной заслонки о режимах полной нагрузки или холостого хода; сигналы от выключателя стартера о моментах пуска двигателя; сигнал от датчика температуры двигателя. На блок схеме изображены устройства, которые выполняют следующие функции интегральный стабилизатор напряжения подает стабилизированное напряжение питания на блок управления VK — коррекция сигнала полной нагрузки SAS — коррекция сигнала холостого хода ВА — коррекция сигнала в период нагрузки NA — шунтирование добавочного сопротивления после пуска SA — шунтирование добавочного сопротивления при пуске и WA — обогащение при прогреве Эти корректирующие сигналы.

Электрогидравлический регулятор по сигналам ЭБУ изменяет давление в нижних камерах дифференциальных клапанов дозатора-распределителя топлива. Таким образом корректируется подача топлива в двигатель на различных режимах его работы, ниже на рисунке.

1 — напорный диск; 2 — корпус дозатора; 3 — подача топлива под давлением системы; 4—канал подачи топлива к форсункам;

5—канал слива топлива в бак через регулятор давления; б— дроссель; 7—верхняя камера; 8—нижняя камера; 9—мембрана;

10—регулятор давления; 11—заслонка; 12—сопло; 13—полюс магнита; 14—немагнитный зазор

Электрогидравлический регулятор содержит канал подачи топлива, сопло, заслонку, канал отвода топлива к нижним камерам дифференциальных клапанов, полюс магнита, обмотку магнита, постоянный магнит (обращен на 90° в плоскости чертежа), винт регулировки начального усилия на заслонке, якорь. Устройство электрогидравлического регулятора показано ниже на рисунках.

1 — подача топлива под давлением в системе, 2 — сопло; 3— заслонка; 4—отвод топлива к нижним камерам дифференциальных клапанов; 5—полюс магнита, 6— обмотка магнита; 7— магнитный поток постоянного магнита; 8 — постоянный магнит; 9 — винт регулировки предварительной загрузки заслонки, 10—магнитный поток электромагнита; 11—заслонка, L1, L2, L3, 4—немагнитные зазоры

В корпусе регулятора, состоящего из немагнитного материала, между двумя двойными полюсами магнита на эластичной ленточной растяжке подвешен якорь. К якорю крепится заслонка. Через магнитные полюса и относящиеся к ним немагнитные зазоры проходят силовые линии электромагнита и постоянного магнита, которые замыкаются через якорь. В двух расположенных диагонально относительно друг друга немагнитных зазорах (L2, L3) магнитные потоки постоянного магнита и электромагнита суммируются, в двух других немагнитных зазорах (L1, L4) эти магнитные потоки вычитаются. На якорь, который перемещает заслонку, в каждом немагнитном зазоре действует сила, которая пропорциональна квадрату магнитного потока, т. е., изменяя силу и направление тока в обмотках электромагнита, можно управлять отклонением заслонки в ту или иную сторону. В канале подачи топлива к электрогидравлическому регулятору давления устанавливается дополнительный фильтр тонкой очистки с магнитной ловушкой для ферромагнитных загрязнений. Слева поступает топливо, справа находится патрубок слива из дозатора. Вверху подключен сливной трубопровод, идущий к баку.

Датчик посылает сигналы в ЭБУ о режимах холостого хода и полной нагрузки. Датчик закреплен на дроссельной заслонке. Подвижный контакт датчика закреплен на оси вращения заслонки и замыкает соответствующие контакты в режимах холостого хода и полной нагрузки.

Регулятор холостого хода, так же как и клапан дополнительной подачи воздуха который используется в системе впрыска K-JETRONIC может изменять проходное сечение байпасного канала Регулятор холостого хода, ниже на рисунках.

1—колодка электрического подсоединения; 2—корпус, 3— возвратная пружина, 4—обмотка; 5—вращающийся якорь с магнитом; В—байпасный канал; 7—регулируемый упор; 8— поворотная заслонка

содержит электрический присоединительный разъем корпус возвратную пружину обмотку вращающийся якорь с магнитом, байпасный канал, регулируемый упор поворотную заслонку Подача на обмотку регулятора пульсирующего постоянного тока вызывает появление на якоре крутящего момента Под воздействием крутящего момента якорь поворачивается преодолевая упругость возвратной пружины. В зависимости от силы тока поворотная заслонка поворачивается вместе с якорем на определенный угол (не больше 60°), перекрывая переходное сечение байпасного канала. При обесточенной обмотке регулятора поворотная заслонка прижимается усилием возвратной пружины к регулируемому упору и открывает байпасный канал.

Этот датчик соединен вакуумным шлангом с впускным трубопроводом двигателя и обычно устанавливается в моторном отсеке,

однако в некоторых системах он помещен в кожух электронного блока управления. Датчик состоит из диафрагмы и пьезоэлектрической схемы, изменяющей сопротивление пропорционально давлению в трубе. Датчик имеет источник питания 5 В и посылает в ЭБУ сигнал напряжения, пропорциональный давлению во впускной трубе, которое изменяется с изменением нагрузки двигателя. ЭБУ использует эти изменения напряжения, получаемые от датчика абсолютного давления в трубе, для корректировки своих сигналов.

Датчик атмосферного давления измеряет плотность воздуха на различных высотах. Так как двигатель на большой высоте над уровнем моря требует меньше топлива, датчик передает сигнал в ЭБУ. Таким образом производится постоянная корректировка состава топливно-воздушной смеси в зависимости от высоты местности над уровнем моря, по которой движется автомобиль.

Оснащение автомобиля системой ограничения испарительных выбросов позволяет уменьшить загрязнение атмосферного воздуха. При этой системе, когда двигатель не работает, пары топлива из топливного бака задерживаются в адсорбере. После пуска двигателя и достижения им нормальной рабочей температуры открывается электромагнитный клапан на адсорбере, что позволяет засосать собранные пары топлива во впускной коллектор двигателя

Для уменьшения выброса с отработавшими газами окисей азота часть отработавших газов при работе двигателя на режиме полной нагрузки может быть возвращена во впускную трубу. Клапан рециркуляции отработавших газов приводится в действие механически или посредством вакуума и регулирует поступление отработавших газов.

Клапан принудительной вентиляции картера позволяет удалять из картера катерные газы путем их отсоса во впускной трубопро-

вод для уменьшения выброса в атмосферу. При оборотах холостого хода клапан не работает и предназначен для создания не-

большого отсасывающего разрежения, когда двигатель работает на режиме полной нагрузки.

Клапан открывает или закрывает воздушную заслонку температурной регуляции во впускном трубопроводе в зависимости от

температуры и давления входящего воздуха.

Этот клапан или клапаны, управляемые соленоидом, изменяют объем впускного трубопровода в зависимости от условий работы

двигателя. Соленоиды открывают или закрывают дополнительные заслонки во впускном трубопроводе для повышения величи-

ны инерционного наполнения (наддува) цилиндров рабочей смесью, а следовательно повышения мощности двигателя на высо-

ких оборотах и крутящего момента на низких.

Потенциометр регулирования СО представляет собой регулируемый резистор, используемый для небольших изменений содержания СО в отработавших газах при оборотах холостого хода. Потенциометр может быть встроен в измеритель расхода воздуха или в электронный блок управления или установлен отдельно.

Потенциометр выполнен по слоистой технологии на базе керамики, щеточный контакт скользит по дорожке потенциометра.

Рычаг потенциометра закреплен на оси рычага напорного диска, от оси рычаг изолирован.

Система работает следующим образом. Топливо из бака с помощью электронасоса через гидроаккумулятор и топливный фильтр

подается к дозатору-распределителю под постоянным давлением. Постоянство давления в системе обеспечивается регулятором давления. Золотник дозатора кинематически связан с диском измерителя расхода воздуха (ротаметром) и изменяет давление топлива, поступающего к форсункам. Форсунки имеют постоянное проходное сечение, поэтому подача топлива в цилиндры зависит от его давления на входе в форсунку. Таким образом осуществляется реализация основной программы дозирования по расходу воздуха. Корректирование этой программы на некоторых режимах (например, обогащение смеси на режимах разгона и полной нагрузки, на режимах пуска, прогрева и т. д.) осуществляется по сигналам ЭБУ, получающего информацию от соответствующих датчиков. Регулятор электрогидравлического типа несколько увеличивает или уменьшает давление топлива, устанавливаемое основным дозатором. К форсункам топливо поступает под скорректированным давлением, что обеспечивает оптимизацию состава и количества топливной смеси. Аккумулятор давления топлива позволяет сохранить в системе остаточное давление при неработающем топливном насосе. Точность измерения расхода воздуха при изменении его температуры зависит от взаимного расположения напорного диска измерителя и диффузора, внутри которого перемещается диcк. Поэтому детали измерителя расхода воздуха выполнены из одинакового материала. Для защиты от обратных вспышек предусмотрена возможность кратковременного смещения подвески измерительного диска от ее начального положения. Для пуска двигателя используется пусковая электромагнитная форсунка, управляемая специальным реле, причем длительность подачи при пуске зависит от теплового состояния двигателя. Чем двигатель холоднее, тем дольше топливо впрыскивается через форсунку На холостом ходу непрогретого двигателя топливо подается через основные форсунки, дроссельная заслонка закрыта, а воздух поступает через нижний дополнительный воздушный канал, выполненный параллельно дроссельной заслонке. Проходное сечение канала автоматически регулируется клапаном дополнительной подачи воздуха на холостом ходу, в зависимости от теплового состояния двигателя. Система «KE-JETRONIC» позволяет осуществлять дозирование топливной смеси по достаточно сложной программе которая реализуется с помощью двух контуров управления. Первый контур управления дозированием топлива осуществляется посредством совместной работы механического дозатора топлива и механического измерителя расхода воздуха. Второй контур управления осуществляется электрогидравлическим регулятором давления топлива с учетом большого числа факторов. Обработав информацию полученную от датчиков, ЭБУ посылает управляющий электрический импульс соответствующей полярности к электрогидравлическому регулятору, который изменяет перепад давления у кромки золотника дозатора и тем самым корректирует подачу топлива. В результате программа дозирования топлива определяется расходом воздуха и необходимостью обогащения смеси при пуске, прогреве, работе при полностью открытой дроссельной заслонке

и разгоне автомобиля. Электронное управление системой позволяет, кроме того, автоматически поддерживать заданную частоту

вращения коленчатого вала на холостом ходу, ограничивать максимальную частоту вращения коленчатого вала, осуществлять

высотную коррекцию подачи топлива, работать с датчиком содержания кислорода (Л - зондом). При пуске двигателя топлив-

ный насос создает давление в системе, диафрагма регулятора давления перемещается вниз. За диафрагмой следует подвиж-

ное тело клапана, подталкиваемое расположенной сверху над ним контрпружиной. После короткого хода тело клапана опускается на неподвижный упор. Диафрагма продолжает опускаться, тарелка клапана отходит от тела клапана и через открывшийся канал излишек топлива сливается в бак. Начинается процесс регулирования давления в системе впрыска. Одновременно с перемещением вниз тела клапана перемещается вниз также и уплотнение, которое соединяет сливную топливную магистраль

дозатора с магистралью слива топлива в топливный бак. При остановке двигателя топливный насос отключается, давление в

системе снижается, диафрагма перемещается вверх, продвигает тарелку клапана к телу клапана и закрывает канал, через который излишек топлива сливался в бак. Вместе с телом клапана перемещается вверх, преодолевая усилие контрпружины, и уплотнение, которое перекрывает слив топлива от дозатора в бак. Дальнейшее снижение давления приостанавливается на величине давления запирания. Небольшое увеличение давления обусловлено работой топливного аккумулятора. Остаточное давление ниже, чем давление, при котором открываются форсунки.

Дозирование топлива происходит с помощью расходомера воздуха и дозатора топлива в зависимости от состояния двигателя и

режима работы. Расходомер воздуха имеет линейную характеристику, при этом приготавливается смесь с коэффициентом избытка воздуха а=1 для всего диапазона работы. Расходомер дополнительно оснащен потенциометром. Рычаг потенциометра закреплен на оси рычага напорного диска. С помощью потенциометра удается измерить скорость увеличения подачи при резком открытии дроссельной заслонки и очень точно дозировать топливо на переходных режимах.Положение напорного диска является мерой поступившего в двигатель количества воздуха. Рычаг передает положение диска на управляющий однощелевой золотник. В зависимости от положения диска золотник освобождает соответствующее поперечное сечение окон, через которые топливо может протекать к дифференциальным диафрагменным напорным клапанам и далее к форсункам. Сверху на управляющий золотник действует гидравлическая сила, обусловленная давлением в системе, которая заставляет золотник всегда следовать за движением ротаметра. В определенных конструкциях гидравлическое давление на золотник усиливает дополнительная пружина, предотвращая повышенную подачу топлива при пониженном общем давлении в системе в момент, когда система не прогрелась. Демпфирующий дроссель сглаживает колебания, которые может генерировать ротаметр. При остановке двигателя золотник опускается на уплотнительное кольцо. Оно удерживается регулировочным винтом и для точного

перекрытия впускных управляющих окон может перемещаться по высоте. Эта мера предотвращает потери давления в езультате

утечки топлива по оси золотника. Дозатор-распределитель топлива и дифференциальные клапаны отличаются от применяемых в системе «K-JETRONIC». Дозатор-распределитель имеет камеры в соответствии с количеством цилиндров двигателя Каждая камера разделена на две части диафрагмой и представляет собой дифференциальный клапан Величина подачи топлива обеспечивается цилиндрическим управляющим золотником, который, Перемещаясь вверх или вниз, дозирует подачу топлива, открывая своей кромкой окна для прохода топлива к верхним камерам дозатора. Дальше топливо поступает в трубки, соединенные с трубопроводами, ведущими к механическим форсункам. Дифференциальные клапаны, изменяя проходное сечение между трубками и соответствующими плоскими седлами на диафрагмах, обеспечивают постоянство перепада давления топлива на дозирующем окне. Таким образом подача топлива полностью определяется площадью проходного сечения окна, ведущего к верхней камере дозатора. Дифференциальные клапаны поддерживают постоянной разность давления между верхней и нижней камерами, независимо от расхода топлива на установившихся режимах. Разность давления составляет, как правило, 0, 2 кг/см2. С каждым дозирующим окном соединен один дифференциальный клапан. Верхняя камера отделена от нижней камеры диафрагмой. Нижние камеры всех клапанов содержат винтовую пружину, соединены друг с другом кольцевым трубопроводом и соединены с электрогидравлическим корректором давления. Седло клапана находится в верхней камере. Каждая верхняя камера соединена с форсункой. Они не сообщаются между собой в отличие от нижних. Падение давления на дозирующих окнах гильзы золотника в отличие от «K-JETRONIC» определяется усилием винтовой пружины в нижней камере, эффективным диаметром диафрагмы, а также электрогидравлическим регулятором давления, и может изменяться от 0 до 1, 5 кг/см2. Если в верхнюю камеру поступает большее количество топлива, то диафрагма изгибается вниз и увеличивает выходное поперечное сечение клапана до тех пор, пока вновь не установится заданное разностное давление. Если расход уменьшается, тогда уменьшается поперечное сечение клапана до тех пор, пока не установится разностное давление 0, 2 кг/см2. Таким образом, на диафрагму действует равновесие сил, которое для любого количества топлива поддерживается путем регулирования поперечного сечения клапана. В трубопроводе подачи топлива к электрогидравлическому регулятору давления устанавливается дополнительный фильтр тонкой очистки с магнитной ловушкой для ферромагнитных загрязнений.

Основные соотношения между подачей воздуха и топлива на эксплуатационных режимах (холостой ход, частичная нагрузка и

полная нагрузка) осуществляются с помощью диффузора и электрогидравлического регулятора давления. Если в системе впрыска используется Л - зонд, то возможен вариант диффузора с постоянной конусностью. В этом случае ЭБУ увеличивает подачу топлива на максимальной мощности и оборотах холостого хода. ЭБУ обрабатывает выходные сигналы датчиков и на их основе рассчитывает управляющий ток для электрогидравлического корректора давления по занесенной в память блока программе.

Электрогидравлический регулятор по сигналам ЭБУ изменяет давление в нижних камерах дифференциальных клапанов дозатора-распределителя топлива. Таким образом корректируется подача топлива в двигатель на различных режимах его работы. Изменяя силу и направление тока в обмотках электромагнита, можно управлять отклонением заслонки в ту или иную стороны. В результате в нижние камеры дифференциальных клапанов поступающее количество топлива находится под давлением скорректированным электрогидравлическим регулятором. Поскольку эти камеры соединены со сливной магистралью через дросселирующее устройство, то поступающее из регулятора топливо повышает давление в нижних камерах дифференциальных клапанов. Это изменение давления приводит к перемещению диафрагмы клапана, а следовательно, к изменению подачи топлива к форсункам. Если направление тока меняется на обратное, то якорь оттягивает заслонку с мембраной от сопла, которое подает топливо в корректор. Давление в нижних камерах увеличивается настолько, что подача топлива к форсункам прекращается (принудительный холостой ход).

К послепусковой фазе примыкает фаза прогрева двигателя. Двигатель нуждается в дополнительном обогащении смеси в период

прогрева из-за частичной конденсации паров бензина на холодных стенках. Датчик температуры посылает сигнал ЭБУ, который

его обрабатывает и посылает управляющий сигнал к электрогидравлическому регулятору давления топлива. В результате подача

топлива к форсункам увеличивается и топливная смесь обогащается.

Если дроссельная заслонка открывается внезапно, то топливно воздушная смесь кратковременно обедняется. Это требует крат-

ковременного обогащения смеси, чтобы добиться хорошей переходной характеристики. При режиме повышенной нагрузки и холодном двигателе ЭБУ, получающий соответствующие сигналы от датчиков, посылает управляющий сигнал на регулятор. Топливная смесь обогащается, тем самым предотвращая провал при разгоне на непрогретом двигателе. Максимальная величина обогащения топливной смеси при ускорении зависит от температуры. Степень обогащения тем выше, чем холоднее двигатель.

При полной нагрузке топливная смесь обогащается. В памяти блока управления хранятся данные о составе топливной смеси

во всем диапазоне частот вращения коленчатого вала. Система «KE-JETRONIC» осуществляет обогащение топливной смеси в

диапазонах от 1500 до 3000 об/мин и свыше 4000 об/мин. Датчик положения дроссельной заслонки или микровыключатель на приводе акселератора подает сигнал полной нагрузки. Информация о частоте вращения поступает от системы зажигания. ЭБУ рассчитывает необходимое для обогащения дополнительное количество топлива, и посылает управляющий сигнал на регулятор давления.

Регулятор холостого хода может изменять проходное сечение байпасного канала. Это позволяет устанавливать оптимальную

частоту вращения коленчатого вала на режимах пуска и прогрева двигателя. Кроме того, указанный регулятор работает и на других режимах холостого хода, учитывая при этом температуру двигателя и текущую частоту вращения коленчатого вала. Сигналы от датчика температуры двигателя и датчикараспределителя зажигания (датчик частоты вращения) поступают на ЭБУ, где сравниваются со значениями, занесенными в память блока при его программировании. Блок вырабатывает управляющий сигнал в виде пульсаций постоянного тока, подаваемый на регулятор холостого хода.

Принудительным холостым ходом называется режим, при котором дроссельная заслонка закрыта, частота вращения коленчатого вала выше числа оборотов холостого хода и топливо в цилиндры не подается, например, при движении под уклон. Использование принудительного холостого хода позволяет снизить расход топлива, а главное резко снизить токсичность. Если водитель во время движения убирает ногу с педали акселератора, дроссельная заслонка закрывается. Датчик положения дроссельной заслонки посылает сигнал ЭБУ о том, что «дроссельная заслонка в исходном положении». Одновременно блок управления получает сигнал от системы зажигания о частоте вращения. Если фактическая частота вращения выше, чем при холостом ходе, ЭБУ изменяет направление тока в электрогидравлическом регуляторе давления. Давление в нижних камерах дифференциальных клапанов становится равным давлению в системе Диафрагма закрывает напорные клапаны в верхних камерах и тем самым перекрывает подачу топлива к клапанным форсункамниже на рисунке.

1— дозатор топлива; 2, 4—подвод топлива под давлением системы; 3, 5—каналы подачи топлива к форсункам; 6 — слив топлива

в бак; 7—верхняя камера дифференциального клапана; в—диафрагма клапана; 9—нижняя камера; 10- сопло; 11—магнитный полюс; 12—заслонка

Подача топлива возобновляется при снижении частоты вращения коленчатого вала до оборотов, близких к оборотам холостого хода. Уровень частоты вращения, при котором включается подача топлива, зависит от прогрева двигателя. Для прогретого двигателя порог включения более низкий. При низкой температуре охлаждающей жидкости пороговые значения возрастают, чтобы холодный двигатель не остановился после включения холостого хода.

При достижении максимально допустимой частоты вращения подача топлива к форсункам прекращается, ЭБУ сравнивает фактическую частоту вращения с запрограммированной. При превышении максимально допустимой частоты вращения электронный блок изменяет полярность тока в обмотках электрогидравлического корректора, что приводит к повышению давления в нижних камерах дифференциальных клапанов, т к. туда попадает больше топлива из системной магистрали. Диафрагмы напорных клапанов выгибаются вверх и перекрывают подачу топлива к форсункам, ниже на рисунке.

Материалы: http://www.carluck.ru/kejetronic

3 ≫

«Уважаемая редакция! Расскажите, пожалуйста, о системе распределенного впрыска топлива KE-III-Jetroniс, особенностях эксплуатации, надежности и ремонтопригодности. Каков ресурс указанной системы и принцип работы.

С уважением, П.И. Шаргородский, г. Минск»

В нашем материале мы более подробно остановимся на системе впрыска, которой оснащались автомобили «Ауди» (в частности, модель «100» начала 90-х годов выпуска).

Изначальная форма этой системы впрыска – K-Jetronic – работала чисто механически. Совместить лямбда-регулирование (с регулируемым каталитическим нейтрализатором) с классической системой K-Jetronic без дополнительных устройств было невозможно. Это обстоятельство послужило главной причиной для дальнейшей разработки KE-Jetronic. Основные элементы прежней системы остались и были дополнены электронным блоком управления и так называемым регулятором давления – дополнительно влияющим на дозирование топлива. Регулятор давления активен главным образом во время прогрева двигателя, однако он также выполняет центральную функцию при регулировании состава горючей смеси через регулируемый каталитический нейтрализатор. Вместе с полностью электронной системой зажигания «VEZ» эта система впрыска представляет собой полную систему управления двигателем. Хотя каждая система снабжена собственным блоком управления, между ними происходит обмен данными. Кроме того, источниками информации для систем зажигания и впрыска часто служат одни и те же датчики. Накопитель неисправностей, записывающий неполадки во время движения, завершает возможности электроники. Память накопителя неисправностей может быть опрошена для установления причины неполадок.

Для нормальной работы системы впрыска электронный блок управления (по-английски ECU) должен принимать следующие сигналы с датчиков:

• нагрузка на двигатель;

• наличие холостого хода;

• наличие полной нагрузки на двигатель;

• детонация из-за раннего УОЗ.

На основе полученных сигналов ECU определяет, в каком режиме находится двигатель:

• режим отсечки топлива (принудительный холостой ход).

В зависимости от режима и сигналов с датчиков ECU управляет следующими параметрами:

• количество топлива в смеси;

• степень открытия РХХ (регулятора холостого хода).

Cхема системы впрыска «KE-JETRONIC»

1 — топливный бак; 2— топливный насос с электроприводом; 3 — аккумулятор давления топлива; 4 — топливный фильтр; 5 — регулятор давления топлива в системе; 6 — измеритель воздуха; 6 а — напорный диск (ротаметр); 6 б— потенциометр; 7 — дозатор топлива; 7 а — управляющий золотник; 7 б—управляющая (рабочая) кромка золотника; 7 в — верхняя камера; 7 г — нижняя камера; 8 — форсунка подачи топлива; 9 — впускная труба; 10 — пусковая форсунка; 11 — термореле времени; 12 — дроссельная заслонка; 13 — датчик положения дроссельной заслонки; 14 — клапан дополнительной подачи воздуха; 15 — датчик температуры двигателя; 16 — электронный блок управления; 17 — электрогидравлический регулятор давления; 18 — датчик содержания кислорода; 19 — датчик-распределитель зажигания; 20 — реле включения топливного насоса; 21 — выключатель зажигания; 22 — аккумуляторная батарея.

Запуск: разрежение, создаваемое всасывающими поршнями двигателя, поднимает запорный клапан в расходомере воздуха. Благодаря этому распределительный поршень допускает приток топлива к форсункам. Во время работы стартера пусковой топливный клапан подает в систему впуска дополнительное количество топлива – если двигатель еще холодный. Только в этом случае блок управления допускает подобный впрыск. Максимальная продолжительность впрыска также зависит от температуры.

Фаза прогрева двигателя: для того чтобы двигатель работал равномерно в первые минуты после пуска, распределительный клапан стабилизации холостого хода открывает канал, по которому впускной воздух может поступать в обход дроссельной заслонки. Дополнительно регулятор давления впускает больше топлива через форсунки. Увеличение поступления воздуха и топлива позволяет достичь повышенной частоты вращения в фазе прогрева двигателя при обогащенной смеси. С повышением температуры двигателя распределительный клапан все больше перекрывает доступ воздуха. Параллельно с этим процессом количество поступающего топлива нормализуется, регулятор давления сокращает количество впрыскиваемого топлива.

Холостой ход: для достижения равномерной частоты вращения вала двигателя в режиме холостого хода и мягкой приемистости в нижнем диапазоне частот вращения вокруг каждой форсунки в камеру сгорания поступает воздух. Это приводит к более мелкому распылению топлива.

Нормальная эксплуатация и ускорение автомобиля не требуют никаких особых приспособлений. Клапанный затвор в расходомере воздуха поднимается либо опускается в зависимости от поступившего количества воздуха. Соответственно меняется поступление топлива к форсункам. Таким образом, совершенно автоматически устанавливается всегда правильное, наиболее выгодное для процесса сгорания соотношение.

Полная нагрузка: датчик углового перемещения дроссельной заслонки при полностью выжатой педали акселератора сигнализирует блоку управления, что сейчас от двигателя требуется максимальная мощность. Тем самым регулятор давления получает команду подать к форсункам немного больше топлива, чем обычно.

Прекращение подачи топлива, например, при движении накатом: функция прекращения подачи топлива в режиме принудительного холостого хода отключает подачу топлива, если автомобиль едет под гору и при этом не выжата педаль акселератора.

Неисправности и самостоятельная диагностика

Блок управления системы впрыска может распознавать и записывать в памяти часть неисправностей, возникающих во время эксплуатации двигателя. Данные накопителя неисправностей считываются с помощью специального прибора для считывания V. A. G 1551, причем накопитель может содержать записи о многих неисправностях. Блок управления системы впрыска KE-III-Jetronic тесно связан в действии с блоком управления системы полностью электронного зажигания. Поэтому сначала считывается накопитель неисправностей системы зажигания, а уж потом накопитель системы впрыска.

К сожалению, многочисленные проверки системы впрыска нельзя провести в домашних условиях из-за отсутствия необходимых контрольно-измерительных приборов. Блок управления не может быть проверен домашними средствами. Практика показывает также, что с этой стороны неполадки подстерегают крайне редко. Гораздо чаще подводят датчики, выключатели и соединения проводов. Поэтому при наличии неполадки следует действовать следующим образом:

1) Проверьте, в порядке ли система зажигания.

2) Проверьте снабжение топливом.

3) Проведите визуальную проверку элементов системы впрыска.

Если таким образом неисправность не была найдена, просмотрите приведенный ниже перечень неисправностей. Или проверьте в мастерской накопитель неисправностей.

План проведения диагностики системы зажигания и системы впрыска

I. Электрооборудование. Система зажигания

1. Проверить напряжение в бортовой сети.

2. Проверить плотность электролита, АКБ и оценить степень ее заряженности.

3. Проверить состояние свечей зажигания и отрегулировать зазоры.

4. Проверить состояние крышки распределителя зажигания

5. Проверить бегунок распределителя зажигания.

6. Проверить высоковольтные провода на сопротивление и качество изоляции.

7. Проверить наконечники проводов.

8. Проверить начальный момент установки зажигания.

9. Проверить работу регулятора опережения зажигания.

10. Проверить датчик положения коленвала (датчик Холла).

11. Проверить напряжение пробоя (силу искры).

12. Проверить надежность соединение двигателя с массой.

II. Система газораспределения

13. Проверить момент установки привода ГРМ.

14. Проверить состояние ремня ГРМ и его натяжение.

15. Проверить состояние подшипников натяжного ролика ремня ГРМ.

16. Проверить состояние подшипников помпы жидкостного охлаждения.

17. Проверить исправность гидрокомпенсаторов клапанов.

III. Цилиндропоршневая группа

18. Произвести замер компрессии по цилиндрам.

IV. Система впрыска топлива

19. Проверить на герметичность и отсутствие подтеканий топливопроводов.

20. Проверить бензобак на наличие в нем грязи.

21. Проверить топливопроводы на предмет засорения.

22. Проверить состояние и производительность бензонасоса.

23. Проверить состояние топливного фильтра.

24. Проверить состояние воздушного фильтра.

25. Убедиться в исправности всего того, что окружает дозатор.

26. Произвести внешнюю диагностику самого дозатора.

27. Проверить дозатор на герметичность.

28. Проверить производительность дозатора.

29. Измерить давления:

30. Проверить состояние фильтра во входном штуцере дозатора (если имеется таковой).

31. Проверить равномерность производительности каналов дозатора на трех различных положениях плунжера дозатора (диска расходомера).

32. Проверить работоспособность электрогидравлического регулятора давления

33. Проверить систему впуска на герметичность.

34. Проверить положение лопаты в корпусе расходомера воздуха.

35. Проверить плавность и легкость хода лопаты и штока плунжера дозатора.

36. Проверить положение осекающей кромки плунжера дозатора, относительно щелей буксы.

37. Проверить работу клапана управления холостым ходом.

38. Проверить работу адсорбера паров бензина.

39. Проверить герметичность вакуумной системы тормозов.

40. Проверить трубку вентиляции картера.

41. Проверить шланги подвода воздуха и каналы обдува форсунок, на предмет герметичности и засорения.

42. Проверить патрубки, ведущие к клапану холостого хода, на предмет герметичности и раскисания.

43. Проверить работу пусковой форсунки и ее герметичность.

44. Проверить общее состояние рабочих форсунок.

45. Проверить производительность форсунок.

46. Проверить факел распыла форсунок.

47. Проверить давление момента открытия форсунок.

48. Проверить давление отсечки (давление слива) форсунок.

49. Проверить форсунки, на подтекание, при остаточном давлении в системе.

50. Проверить стаканчики форсунок на предмет трещин.

51. Проверить уплотнительные кольца форсунок и стаканчиков.

52. Проверить датчик температуры охлаждающей жидкости, в различных температурных режимах.

53. Проверить качество резистивного слоя потенциометра расходомера воздуха.

54. Проверить правильность начального положения установки корпуса потенциометра, относительно корпуса расходомера. Проверяем по напряжению на средней ножке:

а) при включении зажигания;

б) при работе на холостом ходу.

55. Проверить плавное, без рывков, нарастание напряжения на средней ножке, потенциометра, от минимума к максимуму, при плавном поднятии лопаты расходомера воздуха, из одного крайнего положения в другое.

56. Проверить датчик-переключатель Х/Х дроссельных заслонок.

57. Проверить датчик-переключатель «полная нагрузка».

58. Проверить датчик детонации.

59. Проверить датчик положения над уровнем моря.

V. Система выпуска отработавших газов

60. Проверить содержание в выхлопных газах, (CO,CH,NO)

61. Проверить исправность катализатора.

62. Проверить систему выпуска отработавших газов, на герметичность.

63. Проверить напряжение к нагревателю лямбда-зонда.

64. Проверить исправность датчика лямбда-зонда и его работу.

Неисправность Ее причина

А. Холодный двигатель не заводится 1. Регулятор давления не регулирует давление к наполнительному отверстию плунжера или делает это неправильно

2. Неисправный распределительный клапан стабилизации холостого хода

3. Пусковой клапан не впрыскивает топливо

4. Пусковой клапан негерметичен, дефектная прокладка

5. Неправильно установлен запорный клапан

6. Тяжелый ход запорного клапана или управляющего золотника

7. В двигатель поступает неучтенный воздух

В. Прогретый двигатель не заводится 1. См. А 1, 5 и 6

2. Негерметичность форсунок, слишком низкое давление начала открытия

3. Слишком низкое давление в системе

4. Слишком богатая горючая смесь в режиме холостого хода

5. Слишком бедная горючая смесь в режиме холостого хода

С. Холодный двигатель трясется в режиме холостого хода 1. См. А 1, 2, 4, 5 и 7

D. Холодный двигатель работает в режиме разгона с перебоями 1. См. А3

2. Неисправный датчик углового перемещения дроссельной заслонки

Е. Прогретый двигатель трясется в режиме холостого хода 1. См. А 1, 2, 6 и 7

F. Обратные вспышки в выпускном коллекторе 1. См. А 1

G. Вспышки в выпускном коллекторе 1. См. А 1 и 4

3. Не работает топливный насос

Н. Двигатель работает с перебоями, глохнет 1. Топливный насос работает неравномерно

2. Давление топлива в системе не соответствует норме

I. Недостаточная мощность двигателя 1. См. А 1, 4, 6 и 7

3. Недостаточная производительность топливного насоса

4. Дроссельные заслонки не встают в положение полного «газа»

J. Двигатель продолжает работать после выключения зажигания 1. См. А 4, 5 и 6

К. Слишком высокий расход топлива 1. См. А 1 и 4

L. Прогретый двигатель работает в режиме холостого хода на слишком высоких оборотах См. А 2

Регулировочные параметры AUDI-100 двиг. AAR 2.3 5 цилиндров.

1 Зазор между электродами свечей зажигания 0,7-0,9 мм.

2 Угол опережения зажигания гр. 15 ± 1

3 Обороты хол/хода 720 ± 70 об/мин

4 Порядок работы цилиндров 1-2-4-5-3

5 Сопротивление датчика температуры О/Ж при -30’С 24-28 кОм

6 Сопротивление датчика температуры О/Ж при 20’С 2,28-2,72 ком

7 Сопротивление датчика температуры О/Ж при 80’С 290–364 Ом

8 Сопротивление 4-х контактного датчика температуры О/Ж

При 95 С 1,1 кОм

9 Содержание СО 0,1–1,1 %

• контрольное значение 0,5–1,5 %

• регулировочное значение 1,0±0,2 %

10 Напр. лямбда-зонда должно постоянно колебаться Период не более 2х сек. (новый ЛЗ 0.5 сек.). 0,1 до 0,9 V

11 Опорное напр. с ЭБУ на лямбда зонд при вкл. зажигании

12 Сопротивление датчика потенциомера расходомера возд.

Нулевое положение напор¬ного диска 700 ± 140 Ом

При перемещении напор¬ного диска 4,7± 0,9 кОм

13 Напр. среднего вывода потенциометра при вкл. зажигании 0,10-0,20в

14 Напр. среднего вывода потенциометра на хол. ходу от 0,4 до 0,8V

15 Напр. среднего вывода потенциометра на хол. ходу оптимальное. Если более 1 V – неисправен 0,50-0,60V

16 Внутреннее сопротивление ЭГРД 19 ± 1,5 Ом

17 Сила тока ЭГРД при исправном ПНД и ЛЗ и при неподвижной заслонке должна отклоняться от 0 в небольших пределах

При нулевом полож. напорного диска при темп. до 20’С. При перемещении дис¬ка сила тока возрастает. 11–15 мА

Шунтирован концевой вытель дроссельной за¬слонки. Частота вращения ко¬ленчатого вала 2500 об/мин 5–7 мА

18 Темп. охлаждающей жидкости 20’С. Включить зажигание на 3 сек. I = 20–28,5 мА за 4 с. Уменьшение тока до 11–15мА за 20сек

19 Двигатель прогрет. Отпустить педаль «газа» с 1500 об/мин до 1300 об/мин 45 мА

20 Давление электробензонасоса 8,0-10,0 bar

21 Производительность топливного насоса при 12 V 1600 см3/мин.

22 Минимальное остаточное давление (после 10 минут): 3,5 Бар

23 Давление топлива на хол. ходу в верхней камере 6,1–6,5 Бар

24 Давление топлива на хол. ходу в нижней камере 5,6–5,7 bar

25 Управляющее противодавление при 20°С 1-1,3

25 Управляющее противодавление при 90°С 0,3-0,45

26 Производительность форсунок в режиме холостого хода 25-30 мл/мин

27 Производительность форсунок в режиме полной нагрузки 80 мл/мин

28 Производительность дозатора на хол. ходу 130-150 мл/мин

29 Производительность дозатора режим полной нагрузки 140-200 мл/мин

По вопросу об адресах СТО по обслуживанию и ремонту можем порекомендовать нашим читателям воспользоваться соответствующей рекламной и справочной информацией, размещенной в каждом номере нашей газеты.

Подготовил Владислав БАЛАБАНОВ

По материалам http://www.autoprospect.ru/ и http://www.audi-club.ru/

  • 1
  • Facebook 1
  • Twitter 0
  • Google+ 0
  • VKontakte 0
  • Odnoklassniki 0
  • Mail.ru
  • Viber

СХОЖИЕ СТАТЬИБОЛЬШЕ ОТ АВТОРА

Еще раз о переносе отметки техосмотра и возврате госпошлины

Нанесение надписей на автомобиль

Если установлен ксенон самостоятельно

2 КОММЕНТАРИИ

А как быть с тем что установленный на заводе изготовителе мотор NF, AUDI 100 C3 1988г.в. заменили по каким то причинам на AAR впринципе эдентичный, выбросили катализатор с лямда зондом и наконец отключили ЭБУ. Теперь авто работает как обычный механический инжектор и жрет бензин. Что с этим можно сделать? И можно ли? Блок ЭБУ я нашел, но не знаю рабочий он или нет, знаю только что он с мотора NF.

хорошо бы обсудить с ребятами на форуме. Создайте там тему и вопрос скорее решится

Материалы: http://adt.by/sistema-vpryska-ke-iii-jetronic/


Back to top